从人绒毛膜间充质干细胞中提取顺铂包裹的 TRAIL 工程外泌体,用于宫颈癌靶向治疗。

IF 7.1 2区 医学 Q1 CELL & TISSUE ENGINEERING Stem Cell Research & Therapy Pub Date : 2024-11-04 DOI:10.1186/s13287-024-04006-6
Miaomiao Ye, Tingxian Liu, Liqing Miao, Huihui Ji, Zhihui Xu, Huihui Wang, Jian'an Zhang, Xueqiong Zhu
{"title":"从人绒毛膜间充质干细胞中提取顺铂包裹的 TRAIL 工程外泌体,用于宫颈癌靶向治疗。","authors":"Miaomiao Ye, Tingxian Liu, Liqing Miao, Huihui Ji, Zhihui Xu, Huihui Wang, Jian'an Zhang, Xueqiong Zhu","doi":"10.1186/s13287-024-04006-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cisplatin (DDP) is an efficacious and widely applied chemotherapeutic drug for cervical cancer patients who are diagnosed as metastatic and inoperable, or desiring fertility preservation. Tumor necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL) selectively triggers cancer cells apoptosis by binding to cognate death receptors (DR4 and DR5). Mesenchymal stem cells-derived exosomes (MSCs-Exo) have been regarded as ideal drug carriers on account of their nanoscale, low toxicity, low immunogenicity, high stability, biodegradability, and abundant sources.</p><p><strong>Methods: </strong>Human chorion-derived mesenchymal stem cells (hCD-MSCs) were isolated by adherent culture method. TRAIL-engineered hCD-MSCs (hCD-MSCs<sup>TRAIL</sup>) were constructed by lentivirus transfection, and its secreted Exo (hCD-MSCs-Exo<sup>TRAIL</sup>) were acquired by differential centrifugation and confirmed to overexpress TRAIL by western blotting. Next, nanoscale drug delivery systems (DDP & hCD-MSCs-Exo<sup>TRAIL</sup>) were fabricated by loading DDP into hCD-MSCs-Exo<sup>TRAIL</sup> via electroporation. The CCK-8 assay and flow cytometry were conducted to explore the proliferation and apoptosis of cervical cancer cells (SiHa and HeLa), respectively. Cervical cancer-bearing nude mice were constructed to examine the antitumor activity and biosafety of DDP & hCD-MSCs-Exo<sup>TRAIL</sup> in vivo.</p><p><strong>Results: </strong>Compared with hCD-MSCs-Exo, hCD-MSCs-Exo<sup>TRAIL</sup> weakened proliferation and enhanced apoptosis of cervical cancer cells. DDP & hCD-MSCs-Exo<sup>TRAIL</sup> were proved to retard cervical cancer cell proliferation and propel cell apoptosis more effectively than DDP or hCD-MSCs-Exo<sup>TRAIL</sup> alone in vitro. In cervical cancer-bearing mice, DDP & hCD-MSCs-Exo<sup>TRAIL</sup> evidently hampered tumor growth, and its role in inducing apoptosis was mechanistically associated with JNK/p-c-Jun activation and survivin suppression. Moreover, DDP & hCD-MSCs-Exo<sup>TRAIL</sup> showed favorable biosafety in vivo.</p><p><strong>Conclusions: </strong>DDP & hCD-MSCs-Exo<sup>TRAIL</sup> nanoparticles exhibited great promise for cervical cancer treatment as an Exo-based chemo-gene combinational therapy in clinical practice.</p>","PeriodicalId":21876,"journal":{"name":"Stem Cell Research & Therapy","volume":"15 1","pages":"396"},"PeriodicalIF":7.1000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536590/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cisplatin-encapsulated TRAIL-engineered exosomes from human chorion-derived MSCs for targeted cervical cancer therapy.\",\"authors\":\"Miaomiao Ye, Tingxian Liu, Liqing Miao, Huihui Ji, Zhihui Xu, Huihui Wang, Jian'an Zhang, Xueqiong Zhu\",\"doi\":\"10.1186/s13287-024-04006-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Cisplatin (DDP) is an efficacious and widely applied chemotherapeutic drug for cervical cancer patients who are diagnosed as metastatic and inoperable, or desiring fertility preservation. Tumor necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL) selectively triggers cancer cells apoptosis by binding to cognate death receptors (DR4 and DR5). Mesenchymal stem cells-derived exosomes (MSCs-Exo) have been regarded as ideal drug carriers on account of their nanoscale, low toxicity, low immunogenicity, high stability, biodegradability, and abundant sources.</p><p><strong>Methods: </strong>Human chorion-derived mesenchymal stem cells (hCD-MSCs) were isolated by adherent culture method. TRAIL-engineered hCD-MSCs (hCD-MSCs<sup>TRAIL</sup>) were constructed by lentivirus transfection, and its secreted Exo (hCD-MSCs-Exo<sup>TRAIL</sup>) were acquired by differential centrifugation and confirmed to overexpress TRAIL by western blotting. Next, nanoscale drug delivery systems (DDP & hCD-MSCs-Exo<sup>TRAIL</sup>) were fabricated by loading DDP into hCD-MSCs-Exo<sup>TRAIL</sup> via electroporation. The CCK-8 assay and flow cytometry were conducted to explore the proliferation and apoptosis of cervical cancer cells (SiHa and HeLa), respectively. Cervical cancer-bearing nude mice were constructed to examine the antitumor activity and biosafety of DDP & hCD-MSCs-Exo<sup>TRAIL</sup> in vivo.</p><p><strong>Results: </strong>Compared with hCD-MSCs-Exo, hCD-MSCs-Exo<sup>TRAIL</sup> weakened proliferation and enhanced apoptosis of cervical cancer cells. DDP & hCD-MSCs-Exo<sup>TRAIL</sup> were proved to retard cervical cancer cell proliferation and propel cell apoptosis more effectively than DDP or hCD-MSCs-Exo<sup>TRAIL</sup> alone in vitro. In cervical cancer-bearing mice, DDP & hCD-MSCs-Exo<sup>TRAIL</sup> evidently hampered tumor growth, and its role in inducing apoptosis was mechanistically associated with JNK/p-c-Jun activation and survivin suppression. Moreover, DDP & hCD-MSCs-Exo<sup>TRAIL</sup> showed favorable biosafety in vivo.</p><p><strong>Conclusions: </strong>DDP & hCD-MSCs-Exo<sup>TRAIL</sup> nanoparticles exhibited great promise for cervical cancer treatment as an Exo-based chemo-gene combinational therapy in clinical practice.</p>\",\"PeriodicalId\":21876,\"journal\":{\"name\":\"Stem Cell Research & Therapy\",\"volume\":\"15 1\",\"pages\":\"396\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536590/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem Cell Research & Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13287-024-04006-6\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Research & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13287-024-04006-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

背景:顺铂(DDP)是一种有效且广泛应用的化疗药物,适用于确诊为转移性、无法手术或希望保留生育能力的宫颈癌患者。肿瘤坏死因子(TNF)相关凋亡诱导配体(TRAIL)通过与同源死亡受体(DR4和DR5)结合,选择性地触发癌细胞凋亡。间充质干细胞衍生的外泌体(MSCs-Exo)因其纳米级、低毒性、低免疫原性、高稳定性、生物可降解性和丰富的来源而被视为理想的药物载体。通过慢病毒转染构建了TRAIL工程化hCD-MSCs(hCD-MSCsTRAIL),并通过差速离心获得了其分泌的Exo(hCD-MSCs-ExoTRAIL),经Western印迹证实其过表达TRAIL。接着,通过电穿孔将 DDP 装入 hCD-MSCs-ExoTRAIL 中,制成了纳米级给药系统(DDP 和 hCD-MSCs-ExoTRAIL)。CCK-8试验和流式细胞术分别检测了宫颈癌细胞(SiHa和HeLa)的增殖和凋亡情况。通过构建宫颈癌裸鼠来检验 DDP 和 hCD-MSCs-ExoTRAIL 在体内的抗肿瘤活性和生物安全性:结果:与hCD-MSCs-Exo相比,hCD-MSCs-ExoTRAIL能减弱宫颈癌细胞的增殖并增强其凋亡。在体外实验中,DDP 和 hCD-MSCs-ExoTRAIL 比单独使用 DDP 或 hCD-MSCs-ExoTRAIL 能更有效地延缓宫颈癌细胞增殖和促进细胞凋亡。在患宫颈癌的小鼠中,DDP 和 hCD-MSCs-ExoTRAIL 能明显抑制肿瘤生长,其诱导细胞凋亡的作用与 JNK/p-c-Jun 激活和存活素抑制机理有关。此外,DDP和hCD-间充质干细胞-ExoTRAIL在体内表现出良好的生物安全性:结论:DDP & hCD-间充质干细胞-ExoTRAIL纳米颗粒作为一种基于Exo的化疗基因组合疗法,在宫颈癌的临床治疗中大有可为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cisplatin-encapsulated TRAIL-engineered exosomes from human chorion-derived MSCs for targeted cervical cancer therapy.

Background: Cisplatin (DDP) is an efficacious and widely applied chemotherapeutic drug for cervical cancer patients who are diagnosed as metastatic and inoperable, or desiring fertility preservation. Tumor necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL) selectively triggers cancer cells apoptosis by binding to cognate death receptors (DR4 and DR5). Mesenchymal stem cells-derived exosomes (MSCs-Exo) have been regarded as ideal drug carriers on account of their nanoscale, low toxicity, low immunogenicity, high stability, biodegradability, and abundant sources.

Methods: Human chorion-derived mesenchymal stem cells (hCD-MSCs) were isolated by adherent culture method. TRAIL-engineered hCD-MSCs (hCD-MSCsTRAIL) were constructed by lentivirus transfection, and its secreted Exo (hCD-MSCs-ExoTRAIL) were acquired by differential centrifugation and confirmed to overexpress TRAIL by western blotting. Next, nanoscale drug delivery systems (DDP & hCD-MSCs-ExoTRAIL) were fabricated by loading DDP into hCD-MSCs-ExoTRAIL via electroporation. The CCK-8 assay and flow cytometry were conducted to explore the proliferation and apoptosis of cervical cancer cells (SiHa and HeLa), respectively. Cervical cancer-bearing nude mice were constructed to examine the antitumor activity and biosafety of DDP & hCD-MSCs-ExoTRAIL in vivo.

Results: Compared with hCD-MSCs-Exo, hCD-MSCs-ExoTRAIL weakened proliferation and enhanced apoptosis of cervical cancer cells. DDP & hCD-MSCs-ExoTRAIL were proved to retard cervical cancer cell proliferation and propel cell apoptosis more effectively than DDP or hCD-MSCs-ExoTRAIL alone in vitro. In cervical cancer-bearing mice, DDP & hCD-MSCs-ExoTRAIL evidently hampered tumor growth, and its role in inducing apoptosis was mechanistically associated with JNK/p-c-Jun activation and survivin suppression. Moreover, DDP & hCD-MSCs-ExoTRAIL showed favorable biosafety in vivo.

Conclusions: DDP & hCD-MSCs-ExoTRAIL nanoparticles exhibited great promise for cervical cancer treatment as an Exo-based chemo-gene combinational therapy in clinical practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stem Cell Research & Therapy
Stem Cell Research & Therapy CELL BIOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
13.20
自引率
8.00%
发文量
525
审稿时长
1 months
期刊介绍: Stem Cell Research & Therapy serves as a leading platform for translational research in stem cell therapies. This international, peer-reviewed journal publishes high-quality open-access research articles, with a focus on basic, translational, and clinical research in stem cell therapeutics and regenerative therapies. Coverage includes animal models and clinical trials. Additionally, the journal offers reviews, viewpoints, commentaries, and reports.
期刊最新文献
Correction: Multi-omics evaluation of clinical-grade human umbilical cord-derived mesenchymal stem cells in synergistic improvement of aging related disorders in a senescence-accelerated mouse model. Different storage and freezing protocols for extracellular vesicles: a systematic review. Inhibition of soluble epoxide hydrolase reverses bone loss in periodontitis by upregulating EMCN and inhibiting osteoclasts. Intravenous injection of BMSCs modulate tsRNA expression and ameliorate lung remodeling in COPD mice. Exosome crosstalk between cancer stem cells and tumor microenvironment: cancer progression and therapeutic strategies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1