酶催化效率预测:采用卷积神经网络和 XGBoost。

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Frontiers in Artificial Intelligence Pub Date : 2024-10-21 eCollection Date: 2024-01-01 DOI:10.3389/frai.2024.1446063
Meshari Alazmi
{"title":"酶催化效率预测:采用卷积神经网络和 XGBoost。","authors":"Meshari Alazmi","doi":"10.3389/frai.2024.1446063","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>In the intricate realm of enzymology, the precise quantification of enzyme efficiency, epitomized by the turnover number (<i>k</i> <sub>cat</sub>), is a paramount yet elusive objective. Existing methodologies, though sophisticated, often grapple with the inherent stochasticity and multifaceted nature of enzymatic reactions. Thus, there arises a necessity to explore avant-garde computational paradigms.</p><p><strong>Methods: </strong>In this context, we introduce \"enzyme catalytic efficiency prediction (ECEP),\" leveraging advanced deep learning techniques to enhance the previous implementation, TurNuP, for predicting the enzyme catalase <i>k</i> <sub>cat</sub>. Our approach significantly outperforms prior methodologies, incorporating new features derived from enzyme sequences and chemical reaction dynamics. Through ECEP, we unravel the intricate enzyme-substrate interactions, capturing the nuanced interplay of molecular determinants.</p><p><strong>Results: </strong>Preliminary assessments, compared against established models like TurNuP and DLKcat, underscore the superior predictive capabilities of ECEP, marking a pivotal shift <i>in silico</i> enzymatic turnover number estimation. This study enriches the computational toolkit available to enzymologists and lays the groundwork for future explorations in the burgeoning field of bioinformatics. This paper suggested a multi-feature ensemble deep learning-based approach to predict enzyme kinetic parameters using an ensemble convolution neural network and XGBoost by calculating weighted-average of each feature-based model's output to outperform traditional machine learning methods. The proposed \"ECEP\" model significantly outperformed existing methodologies, achieving a mean squared error (MSE) reduction of 0.35 from 0.81 to 0.46 and <i>R</i>-squared score from 0.44 to 0.54, thereby demonstrating its superior accuracy and effectiveness in enzyme catalytic efficiency prediction.</p><p><strong>Discussion: </strong>This improvement underscores the model's potential to enhance the field of bioinformatics, setting a new benchmark for performance.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1446063"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11532030/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enzyme catalytic efficiency prediction: employing convolutional neural networks and XGBoost.\",\"authors\":\"Meshari Alazmi\",\"doi\":\"10.3389/frai.2024.1446063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>In the intricate realm of enzymology, the precise quantification of enzyme efficiency, epitomized by the turnover number (<i>k</i> <sub>cat</sub>), is a paramount yet elusive objective. Existing methodologies, though sophisticated, often grapple with the inherent stochasticity and multifaceted nature of enzymatic reactions. Thus, there arises a necessity to explore avant-garde computational paradigms.</p><p><strong>Methods: </strong>In this context, we introduce \\\"enzyme catalytic efficiency prediction (ECEP),\\\" leveraging advanced deep learning techniques to enhance the previous implementation, TurNuP, for predicting the enzyme catalase <i>k</i> <sub>cat</sub>. Our approach significantly outperforms prior methodologies, incorporating new features derived from enzyme sequences and chemical reaction dynamics. Through ECEP, we unravel the intricate enzyme-substrate interactions, capturing the nuanced interplay of molecular determinants.</p><p><strong>Results: </strong>Preliminary assessments, compared against established models like TurNuP and DLKcat, underscore the superior predictive capabilities of ECEP, marking a pivotal shift <i>in silico</i> enzymatic turnover number estimation. This study enriches the computational toolkit available to enzymologists and lays the groundwork for future explorations in the burgeoning field of bioinformatics. This paper suggested a multi-feature ensemble deep learning-based approach to predict enzyme kinetic parameters using an ensemble convolution neural network and XGBoost by calculating weighted-average of each feature-based model's output to outperform traditional machine learning methods. The proposed \\\"ECEP\\\" model significantly outperformed existing methodologies, achieving a mean squared error (MSE) reduction of 0.35 from 0.81 to 0.46 and <i>R</i>-squared score from 0.44 to 0.54, thereby demonstrating its superior accuracy and effectiveness in enzyme catalytic efficiency prediction.</p><p><strong>Discussion: </strong>This improvement underscores the model's potential to enhance the field of bioinformatics, setting a new benchmark for performance.</p>\",\"PeriodicalId\":33315,\"journal\":{\"name\":\"Frontiers in Artificial Intelligence\",\"volume\":\"7 \",\"pages\":\"1446063\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11532030/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frai.2024.1446063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1446063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

导言:在错综复杂的酶学领域,精确量化酶的效率(以周转数(k cat)为缩影)是一个至关重要但又难以实现的目标。现有的方法虽然复杂,但往往难以解决酶促反应固有的随机性和多面性问题。因此,有必要探索前卫的计算范式:在此背景下,我们引入了 "酶催化效率预测(ECEP)",利用先进的深度学习技术来增强之前用于预测过氧化氢酶 k cat 的实现 TurNuP。我们的方法结合了从酶序列和化学反应动力学中获得的新特征,大大优于之前的方法。通过 ECEP,我们揭示了酶与底物之间错综复杂的相互作用,捕捉到了分子决定因素之间微妙的相互作用:初步评估结果显示,与 TurNuP 和 DLKcat 等成熟模型相比,ECEP 的预测能力更胜一筹,标志着硅酶周转次数估算的关键转变。这项研究丰富了酶学家可用的计算工具包,为今后在蓬勃发展的生物信息学领域进行探索奠定了基础。本文提出了一种基于多特征集合深度学习的方法,利用集合卷积神经网络和 XGBoost,通过计算每个基于特征的模型输出的加权平均值来预测酶动力学参数,从而超越传统的机器学习方法。所提出的 "ECEP "模型明显优于现有方法,其均方误差(MSE)从 0.81 降至 0.46,降低了 0.35,R 方从 0.44 升至 0.54,从而证明了其在酶催化效率预测方面的卓越准确性和有效性:讨论:这一改进凸显了该模型在提高生物信息学领域的潜力,为其性能设定了新的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enzyme catalytic efficiency prediction: employing convolutional neural networks and XGBoost.

Introduction: In the intricate realm of enzymology, the precise quantification of enzyme efficiency, epitomized by the turnover number (k cat), is a paramount yet elusive objective. Existing methodologies, though sophisticated, often grapple with the inherent stochasticity and multifaceted nature of enzymatic reactions. Thus, there arises a necessity to explore avant-garde computational paradigms.

Methods: In this context, we introduce "enzyme catalytic efficiency prediction (ECEP)," leveraging advanced deep learning techniques to enhance the previous implementation, TurNuP, for predicting the enzyme catalase k cat. Our approach significantly outperforms prior methodologies, incorporating new features derived from enzyme sequences and chemical reaction dynamics. Through ECEP, we unravel the intricate enzyme-substrate interactions, capturing the nuanced interplay of molecular determinants.

Results: Preliminary assessments, compared against established models like TurNuP and DLKcat, underscore the superior predictive capabilities of ECEP, marking a pivotal shift in silico enzymatic turnover number estimation. This study enriches the computational toolkit available to enzymologists and lays the groundwork for future explorations in the burgeoning field of bioinformatics. This paper suggested a multi-feature ensemble deep learning-based approach to predict enzyme kinetic parameters using an ensemble convolution neural network and XGBoost by calculating weighted-average of each feature-based model's output to outperform traditional machine learning methods. The proposed "ECEP" model significantly outperformed existing methodologies, achieving a mean squared error (MSE) reduction of 0.35 from 0.81 to 0.46 and R-squared score from 0.44 to 0.54, thereby demonstrating its superior accuracy and effectiveness in enzyme catalytic efficiency prediction.

Discussion: This improvement underscores the model's potential to enhance the field of bioinformatics, setting a new benchmark for performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
期刊最新文献
Advancing smart city factories: enhancing industrial mechanical operations via deep learning techniques. Inpainting of damaged temple murals using edge- and line-guided diffusion patch GAN. Catalyzing IVF outcome prediction: exploring advanced machine learning paradigms for enhanced success rate prognostication. Predicting patient reported outcome measures: a scoping review for the artificial intelligence-guided patient preference predictor. A generative AI-driven interactive listening assessment task.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1