{"title":"用于研究根渗出物与功能微生物群根瘤相互作用的益生菌模型。","authors":"Zhiqiang Pang, Peng Xu","doi":"10.1093/ismejo/wrae223","DOIUrl":null,"url":null,"abstract":"<p><p>Root exudates are important mediators of plant-microbiome interactions. Recent pioneering studies on various aerial root plants, including cereals, have shown that carbohydrate-rich mucilage can enrich diazotrophs and increase host nitrogen utilization and growth. Moreover, non-diazotrophic \"gatekeeper\" microorganisms in mucilage help defend against pathogenic and environmental microbes. These findings highlight the active role of root exudates in mediating plant-microbiome interactions to maintain microbial homeostasis in the rhizosphere. However, little is known about the specific mechanisms by which root exudates modulate the functional microbiome and homeostasis in rhizosphere microhabitats. Here, we propose the typical and stable biointeractions of four plant-specific aerial root mucilage-probiotic systems as a model for understanding root exudate-functional microbiome interaction. We anticipate that this model can provide fundamental biological insights into rhizosphere interactions.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":null,"pages":null},"PeriodicalIF":10.8000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probiotic model for studying rhizosphere interactions of root exudates and the functional microbiome.\",\"authors\":\"Zhiqiang Pang, Peng Xu\",\"doi\":\"10.1093/ismejo/wrae223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Root exudates are important mediators of plant-microbiome interactions. Recent pioneering studies on various aerial root plants, including cereals, have shown that carbohydrate-rich mucilage can enrich diazotrophs and increase host nitrogen utilization and growth. Moreover, non-diazotrophic \\\"gatekeeper\\\" microorganisms in mucilage help defend against pathogenic and environmental microbes. These findings highlight the active role of root exudates in mediating plant-microbiome interactions to maintain microbial homeostasis in the rhizosphere. However, little is known about the specific mechanisms by which root exudates modulate the functional microbiome and homeostasis in rhizosphere microhabitats. Here, we propose the typical and stable biointeractions of four plant-specific aerial root mucilage-probiotic systems as a model for understanding root exudate-functional microbiome interaction. We anticipate that this model can provide fundamental biological insights into rhizosphere interactions.</p>\",\"PeriodicalId\":50271,\"journal\":{\"name\":\"ISME Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISME Journal\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1093/ismejo/wrae223\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/ismejo/wrae223","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Probiotic model for studying rhizosphere interactions of root exudates and the functional microbiome.
Root exudates are important mediators of plant-microbiome interactions. Recent pioneering studies on various aerial root plants, including cereals, have shown that carbohydrate-rich mucilage can enrich diazotrophs and increase host nitrogen utilization and growth. Moreover, non-diazotrophic "gatekeeper" microorganisms in mucilage help defend against pathogenic and environmental microbes. These findings highlight the active role of root exudates in mediating plant-microbiome interactions to maintain microbial homeostasis in the rhizosphere. However, little is known about the specific mechanisms by which root exudates modulate the functional microbiome and homeostasis in rhizosphere microhabitats. Here, we propose the typical and stable biointeractions of four plant-specific aerial root mucilage-probiotic systems as a model for understanding root exudate-functional microbiome interaction. We anticipate that this model can provide fundamental biological insights into rhizosphere interactions.
期刊介绍:
The ISME Journal covers the diverse and integrated areas of microbial ecology. We encourage contributions that represent major advances for the study of microbial ecosystems, communities, and interactions of microorganisms in the environment. Articles in The ISME Journal describe pioneering discoveries of wide appeal that enhance our understanding of functional and mechanistic relationships among microorganisms, their communities, and their habitats.