{"title":"用于光电设备的短波-红外卤化银量子点","authors":"Hongchao Yang, Zhiwei Ma and Qiangbin Wang*, ","doi":"10.1021/acsnano.4c1178710.1021/acsnano.4c11787","DOIUrl":null,"url":null,"abstract":"<p >Silver chalcogenide (Ag<sub>2</sub>X, X = S, Se, Te) semiconductor quantum dots (QDs) have been extensively studied owing to their short-wave infrared (SWIR, 900–2500 nm) excitation and emission along with lower solubility product constant and environmentally benign nature. However, their unsatisfactory photoluminescence quantum yields (PLQYs) make it difficult to obtain optoelectronic devices with high performances. To tackle this challenge, researchers have made great efforts to develop valid strategies to improve the PLQYs of SWIR Ag<sub>2</sub>X QDs by suppressing their nonradiative recombination of excitons. In this Perspective, we summarize the significant approaches of heteroatom doping and surface passivation to enhance the PLQYs of SWIR Ag<sub>2</sub>X QDs, and we conclude their application in high-efficiency optoelectronic devices. Finally, we examine the future trends and promising opportunities of Ag<sub>2</sub>X QDs with regard to their optical properties and optoelectronics. We believe that this Perspective will serve as a valuable reference for future advancement in the synthesis and application of SWIR Ag<sub>2</sub>X QDs.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"18 44","pages":"30123–30131 30123–30131"},"PeriodicalIF":15.8000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shortwave-Infrared Silver Chalcogenide Quantum Dots for Optoelectronic Devices\",\"authors\":\"Hongchao Yang, Zhiwei Ma and Qiangbin Wang*, \",\"doi\":\"10.1021/acsnano.4c1178710.1021/acsnano.4c11787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Silver chalcogenide (Ag<sub>2</sub>X, X = S, Se, Te) semiconductor quantum dots (QDs) have been extensively studied owing to their short-wave infrared (SWIR, 900–2500 nm) excitation and emission along with lower solubility product constant and environmentally benign nature. However, their unsatisfactory photoluminescence quantum yields (PLQYs) make it difficult to obtain optoelectronic devices with high performances. To tackle this challenge, researchers have made great efforts to develop valid strategies to improve the PLQYs of SWIR Ag<sub>2</sub>X QDs by suppressing their nonradiative recombination of excitons. In this Perspective, we summarize the significant approaches of heteroatom doping and surface passivation to enhance the PLQYs of SWIR Ag<sub>2</sub>X QDs, and we conclude their application in high-efficiency optoelectronic devices. Finally, we examine the future trends and promising opportunities of Ag<sub>2</sub>X QDs with regard to their optical properties and optoelectronics. We believe that this Perspective will serve as a valuable reference for future advancement in the synthesis and application of SWIR Ag<sub>2</sub>X QDs.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"18 44\",\"pages\":\"30123–30131 30123–30131\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.4c11787\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c11787","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Shortwave-Infrared Silver Chalcogenide Quantum Dots for Optoelectronic Devices
Silver chalcogenide (Ag2X, X = S, Se, Te) semiconductor quantum dots (QDs) have been extensively studied owing to their short-wave infrared (SWIR, 900–2500 nm) excitation and emission along with lower solubility product constant and environmentally benign nature. However, their unsatisfactory photoluminescence quantum yields (PLQYs) make it difficult to obtain optoelectronic devices with high performances. To tackle this challenge, researchers have made great efforts to develop valid strategies to improve the PLQYs of SWIR Ag2X QDs by suppressing their nonradiative recombination of excitons. In this Perspective, we summarize the significant approaches of heteroatom doping and surface passivation to enhance the PLQYs of SWIR Ag2X QDs, and we conclude their application in high-efficiency optoelectronic devices. Finally, we examine the future trends and promising opportunities of Ag2X QDs with regard to their optical properties and optoelectronics. We believe that this Perspective will serve as a valuable reference for future advancement in the synthesis and application of SWIR Ag2X QDs.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.