Madani Labed*, Ji-Yun Moon, Seung-Il Kim, Jang Hyeok Park, Justin S. Kim, Chowdam Venkata Prasad, Sang-Hoon Bae* and You Seung Rim*,
{"title":"用于极端环境应用的二维嵌入式超宽带隙器件","authors":"Madani Labed*, Ji-Yun Moon, Seung-Il Kim, Jang Hyeok Park, Justin S. Kim, Chowdam Venkata Prasad, Sang-Hoon Bae* and You Seung Rim*, ","doi":"10.1021/acsnano.4c0917310.1021/acsnano.4c09173","DOIUrl":null,"url":null,"abstract":"<p >Ultrawide bandgap semiconductors such as AlGaN, AlN, diamond, and β-Ga<sub>2</sub>O<sub>3</sub> have significantly enhanced the functionality of electronic and optoelectronic devices, particularly in harsh environment conditions. However, some of these materials face challenges such as low thermal conductivity, limited P-type conductivity, and scalability issues, which can hinder device performance under extreme conditions like high temperature and irradiation. In this review paper, we explore the integration of various two-dimensional materials (2DMs) to address these challenges. These materials offer excellent properties such as high thermal conductivity, mechanical strength, and electrical properties. Notably, graphene, hexagonal boron nitride, transition metal dichalcogenides, 2D and quasi-2D Ga<sub>2</sub>O<sub>3</sub>, TeO<sub>2</sub>, and others are investigated for their potential in improving ultrawide bandgap semiconductor-based devices. We highlight the significant improvement observed in the device performance after the incorporation of 2D materials. By leveraging the properties of these materials, ultrawide bandgap semiconductor devices demonstrate enhanced functionality and resilience in harsh environmental conditions. This review provides valuable insights into the role of 2D materials in advancing the field of ultrawide bandgap semiconductors and highlights opportunities for further research and development in this area.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"18 44","pages":"30153–30183 30153–30183"},"PeriodicalIF":15.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2D Embedded Ultrawide Bandgap Devices for Extreme Environment Applications\",\"authors\":\"Madani Labed*, Ji-Yun Moon, Seung-Il Kim, Jang Hyeok Park, Justin S. Kim, Chowdam Venkata Prasad, Sang-Hoon Bae* and You Seung Rim*, \",\"doi\":\"10.1021/acsnano.4c0917310.1021/acsnano.4c09173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Ultrawide bandgap semiconductors such as AlGaN, AlN, diamond, and β-Ga<sub>2</sub>O<sub>3</sub> have significantly enhanced the functionality of electronic and optoelectronic devices, particularly in harsh environment conditions. However, some of these materials face challenges such as low thermal conductivity, limited P-type conductivity, and scalability issues, which can hinder device performance under extreme conditions like high temperature and irradiation. In this review paper, we explore the integration of various two-dimensional materials (2DMs) to address these challenges. These materials offer excellent properties such as high thermal conductivity, mechanical strength, and electrical properties. Notably, graphene, hexagonal boron nitride, transition metal dichalcogenides, 2D and quasi-2D Ga<sub>2</sub>O<sub>3</sub>, TeO<sub>2</sub>, and others are investigated for their potential in improving ultrawide bandgap semiconductor-based devices. We highlight the significant improvement observed in the device performance after the incorporation of 2D materials. By leveraging the properties of these materials, ultrawide bandgap semiconductor devices demonstrate enhanced functionality and resilience in harsh environmental conditions. This review provides valuable insights into the role of 2D materials in advancing the field of ultrawide bandgap semiconductors and highlights opportunities for further research and development in this area.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"18 44\",\"pages\":\"30153–30183 30153–30183\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.4c09173\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c09173","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
2D Embedded Ultrawide Bandgap Devices for Extreme Environment Applications
Ultrawide bandgap semiconductors such as AlGaN, AlN, diamond, and β-Ga2O3 have significantly enhanced the functionality of electronic and optoelectronic devices, particularly in harsh environment conditions. However, some of these materials face challenges such as low thermal conductivity, limited P-type conductivity, and scalability issues, which can hinder device performance under extreme conditions like high temperature and irradiation. In this review paper, we explore the integration of various two-dimensional materials (2DMs) to address these challenges. These materials offer excellent properties such as high thermal conductivity, mechanical strength, and electrical properties. Notably, graphene, hexagonal boron nitride, transition metal dichalcogenides, 2D and quasi-2D Ga2O3, TeO2, and others are investigated for their potential in improving ultrawide bandgap semiconductor-based devices. We highlight the significant improvement observed in the device performance after the incorporation of 2D materials. By leveraging the properties of these materials, ultrawide bandgap semiconductor devices demonstrate enhanced functionality and resilience in harsh environmental conditions. This review provides valuable insights into the role of 2D materials in advancing the field of ultrawide bandgap semiconductors and highlights opportunities for further research and development in this area.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.