{"title":"推进物联网安全:利用优化的卷积稀疏菲克斯定律图点跨网络,针对工业 4.0 中不断演变的威胁开发新型入侵检测系统","authors":"P.A. Mathina, K. Valarmathi","doi":"10.1016/j.cose.2024.104169","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid advancement of Industry 4.0, the integration of Internet of Things (IoT) strategies in industrial environments has increased exponentially. While this integration enhances productivity and efficiency, it also introduces significant security vulnerabilities. Previous research has employed several deep learning approaches for intrusion detection; however, these methods often suffer from insufficient accuracy, increased computational time, complexity, and higher error rates. To address these issues, this work proposes an innovative solution: \"Advancing IoT Security: A Novel Intrusion Detection System (IDS) for Evolving Threats in Industry 4.0 using optimized Convolutional Sparse Fick's Law Graph Pointtrans-Net (CSFLGPtrans-Net).\" The proposed system utilizes a comprehensive intrusion detection dataset composed of four different datasets: ToN-IoT, NSL-KDD, CSE‑CIC‑IDS2018, and IoT_bot. Initially, the input data undergoes a pre-processing stage that includes cleaning columns and rows, encoding features, and normalizing data. Following this, a hybrid optimization method, combining the Fire Hawk Optimizer with the Spider Wasp Optimizer, is applied for feature selection. This step is crucial for identifying the most significant features to enhance classification accuracy. The refined data is then classified using the CSFLGPtrans-Net model. To ensure secure data transfer, Fuzzy-based Elliptic Curve Cryptography (FECC) is employed. Experimental simulations conducted on the Python platform demonstrate that the proposed method outperforms existing approaches across various performance metrics, achieving a higher accuracy of 98% and a recall of 0.993. These results highlight the method's superior efficiency and potential for further advancement in securing Industry 4.0 environments.</div></div>","PeriodicalId":51004,"journal":{"name":"Computers & Security","volume":"148 ","pages":"Article 104169"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing IoT security: A novel intrusion detection system for evolving threats in industry 4.0 using optimized convolutional sparse Ficks law graph point trans-Net\",\"authors\":\"P.A. Mathina, K. Valarmathi\",\"doi\":\"10.1016/j.cose.2024.104169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the rapid advancement of Industry 4.0, the integration of Internet of Things (IoT) strategies in industrial environments has increased exponentially. While this integration enhances productivity and efficiency, it also introduces significant security vulnerabilities. Previous research has employed several deep learning approaches for intrusion detection; however, these methods often suffer from insufficient accuracy, increased computational time, complexity, and higher error rates. To address these issues, this work proposes an innovative solution: \\\"Advancing IoT Security: A Novel Intrusion Detection System (IDS) for Evolving Threats in Industry 4.0 using optimized Convolutional Sparse Fick's Law Graph Pointtrans-Net (CSFLGPtrans-Net).\\\" The proposed system utilizes a comprehensive intrusion detection dataset composed of four different datasets: ToN-IoT, NSL-KDD, CSE‑CIC‑IDS2018, and IoT_bot. Initially, the input data undergoes a pre-processing stage that includes cleaning columns and rows, encoding features, and normalizing data. Following this, a hybrid optimization method, combining the Fire Hawk Optimizer with the Spider Wasp Optimizer, is applied for feature selection. This step is crucial for identifying the most significant features to enhance classification accuracy. The refined data is then classified using the CSFLGPtrans-Net model. To ensure secure data transfer, Fuzzy-based Elliptic Curve Cryptography (FECC) is employed. Experimental simulations conducted on the Python platform demonstrate that the proposed method outperforms existing approaches across various performance metrics, achieving a higher accuracy of 98% and a recall of 0.993. These results highlight the method's superior efficiency and potential for further advancement in securing Industry 4.0 environments.</div></div>\",\"PeriodicalId\":51004,\"journal\":{\"name\":\"Computers & Security\",\"volume\":\"148 \",\"pages\":\"Article 104169\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167404824004747\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Security","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167404824004747","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Advancing IoT security: A novel intrusion detection system for evolving threats in industry 4.0 using optimized convolutional sparse Ficks law graph point trans-Net
With the rapid advancement of Industry 4.0, the integration of Internet of Things (IoT) strategies in industrial environments has increased exponentially. While this integration enhances productivity and efficiency, it also introduces significant security vulnerabilities. Previous research has employed several deep learning approaches for intrusion detection; however, these methods often suffer from insufficient accuracy, increased computational time, complexity, and higher error rates. To address these issues, this work proposes an innovative solution: "Advancing IoT Security: A Novel Intrusion Detection System (IDS) for Evolving Threats in Industry 4.0 using optimized Convolutional Sparse Fick's Law Graph Pointtrans-Net (CSFLGPtrans-Net)." The proposed system utilizes a comprehensive intrusion detection dataset composed of four different datasets: ToN-IoT, NSL-KDD, CSE‑CIC‑IDS2018, and IoT_bot. Initially, the input data undergoes a pre-processing stage that includes cleaning columns and rows, encoding features, and normalizing data. Following this, a hybrid optimization method, combining the Fire Hawk Optimizer with the Spider Wasp Optimizer, is applied for feature selection. This step is crucial for identifying the most significant features to enhance classification accuracy. The refined data is then classified using the CSFLGPtrans-Net model. To ensure secure data transfer, Fuzzy-based Elliptic Curve Cryptography (FECC) is employed. Experimental simulations conducted on the Python platform demonstrate that the proposed method outperforms existing approaches across various performance metrics, achieving a higher accuracy of 98% and a recall of 0.993. These results highlight the method's superior efficiency and potential for further advancement in securing Industry 4.0 environments.
期刊介绍:
Computers & Security is the most respected technical journal in the IT security field. With its high-profile editorial board and informative regular features and columns, the journal is essential reading for IT security professionals around the world.
Computers & Security provides you with a unique blend of leading edge research and sound practical management advice. It is aimed at the professional involved with computer security, audit, control and data integrity in all sectors - industry, commerce and academia. Recognized worldwide as THE primary source of reference for applied research and technical expertise it is your first step to fully secure systems.