{"title":"嫦娥五号土壤和矿物成分的铁同位素:对月球表面爆发后过程的影响","authors":"","doi":"10.1016/j.icarus.2024.116362","DOIUrl":null,"url":null,"abstract":"<div><div>Due to rapid magma cooling and extensive space weathering, significant disequilibrium crystallization and secondary modification widely occur in lunar mare basalt after its eruption on the lunar surface. In this study, we conducted bulk and in-situ Fe isotope analyses to investigate the post-eruption processes on Chang'e-5 (CE-5) samples. The CE-5 soil shows a minor elevation of δ<sup>56</sup>Fe value (∼0.05 ‰) relative to the CE-5 basalt clasts. Correlations between Ni and Cu contents with δ<sup>56</sup>Fe values suggest that the minor increase in the δ<sup>56</sup>Fe from the CE-5 basalt to soil primarily occurred during evaporation caused by meteorite impacts. Such isotopic variation between CE-5 basalt and soils is notably lower than what is observed for Apollo samples and reflects the low maturity of CE-5 soils. This is consistent with the low Is/FeO value constrained by magnetic approaches. Therefore, measuring the δ<sup>56</sup>Fe values of lunar soil is suitable to evaluate the degrees of maturity for lunar soils due to space weathering. In-situ analyses of δ<sup>56</sup>Fe reveal significant variations in different grains of olivine (δ<sup>56</sup>Fe: −0.57 to −0.17 ‰) and ilmenite (−0.06 to +0.42 ‰) and also in their interior (mainly for olivine). These δ<sup>56</sup>Fe variations in minerals can be ascribed to the disequilibrium crystallization of lava flow and fast cooling, which is consistent with conclusions based on petrologic observations such as its extensive differentiation and silicate liquid immiscibility. Therefore, the post-eruption processes on the lunar surface could lead to significant variations in isotopic compositions at different scales of basalts, which in turn record the history of late-stage magma evolution and space weathering on the lunar surface.</div></div>","PeriodicalId":13199,"journal":{"name":"Icarus","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iron isotopes of Chang'e-5 soil and mineral components: Implications for post-eruption processes on lunar surface\",\"authors\":\"\",\"doi\":\"10.1016/j.icarus.2024.116362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Due to rapid magma cooling and extensive space weathering, significant disequilibrium crystallization and secondary modification widely occur in lunar mare basalt after its eruption on the lunar surface. In this study, we conducted bulk and in-situ Fe isotope analyses to investigate the post-eruption processes on Chang'e-5 (CE-5) samples. The CE-5 soil shows a minor elevation of δ<sup>56</sup>Fe value (∼0.05 ‰) relative to the CE-5 basalt clasts. Correlations between Ni and Cu contents with δ<sup>56</sup>Fe values suggest that the minor increase in the δ<sup>56</sup>Fe from the CE-5 basalt to soil primarily occurred during evaporation caused by meteorite impacts. Such isotopic variation between CE-5 basalt and soils is notably lower than what is observed for Apollo samples and reflects the low maturity of CE-5 soils. This is consistent with the low Is/FeO value constrained by magnetic approaches. Therefore, measuring the δ<sup>56</sup>Fe values of lunar soil is suitable to evaluate the degrees of maturity for lunar soils due to space weathering. In-situ analyses of δ<sup>56</sup>Fe reveal significant variations in different grains of olivine (δ<sup>56</sup>Fe: −0.57 to −0.17 ‰) and ilmenite (−0.06 to +0.42 ‰) and also in their interior (mainly for olivine). These δ<sup>56</sup>Fe variations in minerals can be ascribed to the disequilibrium crystallization of lava flow and fast cooling, which is consistent with conclusions based on petrologic observations such as its extensive differentiation and silicate liquid immiscibility. Therefore, the post-eruption processes on the lunar surface could lead to significant variations in isotopic compositions at different scales of basalts, which in turn record the history of late-stage magma evolution and space weathering on the lunar surface.</div></div>\",\"PeriodicalId\":13199,\"journal\":{\"name\":\"Icarus\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Icarus\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019103524004226\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icarus","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019103524004226","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Iron isotopes of Chang'e-5 soil and mineral components: Implications for post-eruption processes on lunar surface
Due to rapid magma cooling and extensive space weathering, significant disequilibrium crystallization and secondary modification widely occur in lunar mare basalt after its eruption on the lunar surface. In this study, we conducted bulk and in-situ Fe isotope analyses to investigate the post-eruption processes on Chang'e-5 (CE-5) samples. The CE-5 soil shows a minor elevation of δ56Fe value (∼0.05 ‰) relative to the CE-5 basalt clasts. Correlations between Ni and Cu contents with δ56Fe values suggest that the minor increase in the δ56Fe from the CE-5 basalt to soil primarily occurred during evaporation caused by meteorite impacts. Such isotopic variation between CE-5 basalt and soils is notably lower than what is observed for Apollo samples and reflects the low maturity of CE-5 soils. This is consistent with the low Is/FeO value constrained by magnetic approaches. Therefore, measuring the δ56Fe values of lunar soil is suitable to evaluate the degrees of maturity for lunar soils due to space weathering. In-situ analyses of δ56Fe reveal significant variations in different grains of olivine (δ56Fe: −0.57 to −0.17 ‰) and ilmenite (−0.06 to +0.42 ‰) and also in their interior (mainly for olivine). These δ56Fe variations in minerals can be ascribed to the disequilibrium crystallization of lava flow and fast cooling, which is consistent with conclusions based on petrologic observations such as its extensive differentiation and silicate liquid immiscibility. Therefore, the post-eruption processes on the lunar surface could lead to significant variations in isotopic compositions at different scales of basalts, which in turn record the history of late-stage magma evolution and space weathering on the lunar surface.
期刊介绍:
Icarus is devoted to the publication of original contributions in the field of Solar System studies. Manuscripts reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems are welcome. The journal generally does not publish papers devoted exclusively to the Sun, the Earth, celestial mechanics, meteoritics, or astrophysics. Icarus does not publish papers that provide "improved" versions of Bode''s law, or other numerical relations, without a sound physical basis. Icarus does not publish meeting announcements or general notices. Reviews, historical papers, and manuscripts describing spacecraft instrumentation may be considered, but only with prior approval of the editor. An entire issue of the journal is occasionally devoted to a single subject, usually arising from a conference on the same topic. The language of publication is English. American or British usage is accepted, but not a mixture of these.