{"title":"可解释的交通事故预测:关注时空多图交通流学习方法","authors":"Chaojie Li;Borui Zhang;Zeyu Wang;Yin Yang;Xiaojun Zhou;Shirui Pan;Xinghuo Yu","doi":"10.1109/TITS.2024.3435995","DOIUrl":null,"url":null,"abstract":"Traffic accident prediction plays a vital role in Intelligent Transportation Systems (ITS), where a large number of traffic streaming data are generated on a daily basis for spatiotemporal big data analysis. The rarity of accidents and the absent interconnection information make it hard for spatiotemporal modeling. Moreover, the inherent characteristic of the black box predictive model makes it difficult to interpret the reliability and effectiveness of the deep learning model. To address these issues, a novel self-explanatory spatial-temporal deep learning model–Attention Spatial-Temporal Multi-Graph Convolutional Network (ASTMGCN) is proposed for traffic accident prediction. The original recorded rare accident data is formulated as a multivariate irregularly interval-aligned dataset, and the temporal discretization method is used to transfer into regularly sampled time series. Multiple graphs are defined to construct edge features and represent spatial relationships when node-related information is missing. Multi-graph convolutional operators and attention mechanisms are integrated into a Sequence-to-Sequence (Seq2Seq) framework to effectively capture dynamic spatial and temporal features and correlations in multi-step prediction. Comparative experiments and interpretability analysis are conducted on a real-world data set, and results indicate that our model can not only yield superior prediction performance but also has the advantage of interpretability.","PeriodicalId":13416,"journal":{"name":"IEEE Transactions on Intelligent Transportation Systems","volume":"25 11","pages":"15574-15586"},"PeriodicalIF":7.9000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interpretable Traffic Accident Prediction: Attention Spatial–Temporal Multi-Graph Traffic Stream Learning Approach\",\"authors\":\"Chaojie Li;Borui Zhang;Zeyu Wang;Yin Yang;Xiaojun Zhou;Shirui Pan;Xinghuo Yu\",\"doi\":\"10.1109/TITS.2024.3435995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic accident prediction plays a vital role in Intelligent Transportation Systems (ITS), where a large number of traffic streaming data are generated on a daily basis for spatiotemporal big data analysis. The rarity of accidents and the absent interconnection information make it hard for spatiotemporal modeling. Moreover, the inherent characteristic of the black box predictive model makes it difficult to interpret the reliability and effectiveness of the deep learning model. To address these issues, a novel self-explanatory spatial-temporal deep learning model–Attention Spatial-Temporal Multi-Graph Convolutional Network (ASTMGCN) is proposed for traffic accident prediction. The original recorded rare accident data is formulated as a multivariate irregularly interval-aligned dataset, and the temporal discretization method is used to transfer into regularly sampled time series. Multiple graphs are defined to construct edge features and represent spatial relationships when node-related information is missing. Multi-graph convolutional operators and attention mechanisms are integrated into a Sequence-to-Sequence (Seq2Seq) framework to effectively capture dynamic spatial and temporal features and correlations in multi-step prediction. Comparative experiments and interpretability analysis are conducted on a real-world data set, and results indicate that our model can not only yield superior prediction performance but also has the advantage of interpretability.\",\"PeriodicalId\":13416,\"journal\":{\"name\":\"IEEE Transactions on Intelligent Transportation Systems\",\"volume\":\"25 11\",\"pages\":\"15574-15586\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Intelligent Transportation Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10693871/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10693871/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Traffic accident prediction plays a vital role in Intelligent Transportation Systems (ITS), where a large number of traffic streaming data are generated on a daily basis for spatiotemporal big data analysis. The rarity of accidents and the absent interconnection information make it hard for spatiotemporal modeling. Moreover, the inherent characteristic of the black box predictive model makes it difficult to interpret the reliability and effectiveness of the deep learning model. To address these issues, a novel self-explanatory spatial-temporal deep learning model–Attention Spatial-Temporal Multi-Graph Convolutional Network (ASTMGCN) is proposed for traffic accident prediction. The original recorded rare accident data is formulated as a multivariate irregularly interval-aligned dataset, and the temporal discretization method is used to transfer into regularly sampled time series. Multiple graphs are defined to construct edge features and represent spatial relationships when node-related information is missing. Multi-graph convolutional operators and attention mechanisms are integrated into a Sequence-to-Sequence (Seq2Seq) framework to effectively capture dynamic spatial and temporal features and correlations in multi-step prediction. Comparative experiments and interpretability analysis are conducted on a real-world data set, and results indicate that our model can not only yield superior prediction performance but also has the advantage of interpretability.
期刊介绍:
The theoretical, experimental and operational aspects of electrical and electronics engineering and information technologies as applied to Intelligent Transportation Systems (ITS). Intelligent Transportation Systems are defined as those systems utilizing synergistic technologies and systems engineering concepts to develop and improve transportation systems of all kinds. The scope of this interdisciplinary activity includes the promotion, consolidation and coordination of ITS technical activities among IEEE entities, and providing a focus for cooperative activities, both internally and externally.