{"title":"针对视觉遮挡下交互式运动规划的交叉可观察性乐观-悲观安全强化学习","authors":"Xiaohui Hou;Minggang Gan;Wei Wu;Yuan Ji;Shiyue Zhao;Jie Chen","doi":"10.1109/TITS.2024.3443397","DOIUrl":null,"url":null,"abstract":"This study focuses on the motion planning and risk evaluation of unprotected left turns at occluded intersections for autonomous vehicles. In this paper, we present an interactive motion planning controller that combines Cross-Observability Optimistic-Pessimistic Safe Reinforcement Learning (COOP-SRL) and Nonlinear Model Predictive Control (NMPC), with consideration of the uncertain potential risk of occluded zone, the trade-off between safety and efficiency, and the dynamic interaction between vehicles. The proposed COOP-SRL algorithm integrates fully and partially observable policies through cross-observability soft imitation learning to leverage the expert guidance and improve learning efficiency. Moreover, the optimistic exploration policy and pessimism safe constraint are adopted to provide an adaptive safe strategy without hindering the exploration during learning process. Finally, the evaluations of the proposed controller were conducted in occluded intersection scenarios with various traffic density level, which indicate that the proposed method outperforms both the optimization-based and learning-based baselines in qualitative and quantitative indexes.","PeriodicalId":13416,"journal":{"name":"IEEE Transactions on Intelligent Transportation Systems","volume":"25 11","pages":"17602-17613"},"PeriodicalIF":7.9000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-Observability Optimistic-Pessimistic Safe Reinforcement Learning for Interactive Motion Planning With Visual Occlusion\",\"authors\":\"Xiaohui Hou;Minggang Gan;Wei Wu;Yuan Ji;Shiyue Zhao;Jie Chen\",\"doi\":\"10.1109/TITS.2024.3443397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study focuses on the motion planning and risk evaluation of unprotected left turns at occluded intersections for autonomous vehicles. In this paper, we present an interactive motion planning controller that combines Cross-Observability Optimistic-Pessimistic Safe Reinforcement Learning (COOP-SRL) and Nonlinear Model Predictive Control (NMPC), with consideration of the uncertain potential risk of occluded zone, the trade-off between safety and efficiency, and the dynamic interaction between vehicles. The proposed COOP-SRL algorithm integrates fully and partially observable policies through cross-observability soft imitation learning to leverage the expert guidance and improve learning efficiency. Moreover, the optimistic exploration policy and pessimism safe constraint are adopted to provide an adaptive safe strategy without hindering the exploration during learning process. Finally, the evaluations of the proposed controller were conducted in occluded intersection scenarios with various traffic density level, which indicate that the proposed method outperforms both the optimization-based and learning-based baselines in qualitative and quantitative indexes.\",\"PeriodicalId\":13416,\"journal\":{\"name\":\"IEEE Transactions on Intelligent Transportation Systems\",\"volume\":\"25 11\",\"pages\":\"17602-17613\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Intelligent Transportation Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10693313/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10693313/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Cross-Observability Optimistic-Pessimistic Safe Reinforcement Learning for Interactive Motion Planning With Visual Occlusion
This study focuses on the motion planning and risk evaluation of unprotected left turns at occluded intersections for autonomous vehicles. In this paper, we present an interactive motion planning controller that combines Cross-Observability Optimistic-Pessimistic Safe Reinforcement Learning (COOP-SRL) and Nonlinear Model Predictive Control (NMPC), with consideration of the uncertain potential risk of occluded zone, the trade-off between safety and efficiency, and the dynamic interaction between vehicles. The proposed COOP-SRL algorithm integrates fully and partially observable policies through cross-observability soft imitation learning to leverage the expert guidance and improve learning efficiency. Moreover, the optimistic exploration policy and pessimism safe constraint are adopted to provide an adaptive safe strategy without hindering the exploration during learning process. Finally, the evaluations of the proposed controller were conducted in occluded intersection scenarios with various traffic density level, which indicate that the proposed method outperforms both the optimization-based and learning-based baselines in qualitative and quantitative indexes.
期刊介绍:
The theoretical, experimental and operational aspects of electrical and electronics engineering and information technologies as applied to Intelligent Transportation Systems (ITS). Intelligent Transportation Systems are defined as those systems utilizing synergistic technologies and systems engineering concepts to develop and improve transportation systems of all kinds. The scope of this interdisciplinary activity includes the promotion, consolidation and coordination of ITS technical activities among IEEE entities, and providing a focus for cooperative activities, both internally and externally.