辣椒素缠结多壁碳纳米管对抗乳腺癌:理论与实验方法

IF 2.7 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Journal of Cluster Science Pub Date : 2024-09-21 DOI:10.1007/s10876-024-02694-x
Govardhan Katta Radhakrishna, Sameera Hammigi Ramesh, Shannon D. Almeida, Golla Sireesha, Soundarya Ramesh, Panneerselvam Theivendren, A. Santhana Krishna Kumar, Kumarappan Chidamabaram, Damodar Nayak Ammunje, Selvaraj Kunjiappan, Parasuraman Pavadai
{"title":"辣椒素缠结多壁碳纳米管对抗乳腺癌:理论与实验方法","authors":"Govardhan Katta Radhakrishna,&nbsp;Sameera Hammigi Ramesh,&nbsp;Shannon D. Almeida,&nbsp;Golla Sireesha,&nbsp;Soundarya Ramesh,&nbsp;Panneerselvam Theivendren,&nbsp;A. Santhana Krishna Kumar,&nbsp;Kumarappan Chidamabaram,&nbsp;Damodar Nayak Ammunje,&nbsp;Selvaraj Kunjiappan,&nbsp;Parasuraman Pavadai","doi":"10.1007/s10876-024-02694-x","DOIUrl":null,"url":null,"abstract":"<div><p>Conventional treatment strategies suffer from a lack of solubility, low bioavailability at the target site, a lack of target specificity, and indiscriminate drug distribution, all of which lead to drug resistance. Therefore, the present study aimed to deliver capsaicin into breast cancer cells through folic acid-conjugated capsaicin-loaded carboxylic acid-functionalised multiwalled carbon nanotubes (FA-CAP-COOHMWCNTs). FA-CAP-COOHMWCNTs was formulated and characterized by FTIR (Fourier transform infrared spectroscopy), SEM (Scanning electron microscopy), HR-TEM (High-resolution transmission electron microscopy), and XRD (X-ray diffraction) analysis. In silico studies demonstrated that the active molecule, capsaicin can strongly bind onto C-SRC kinase receptor to suppress cancer progression. The in vitro cellular viability of MCF-7 breast cancer cells after 24h treatment with 100 µg × mL<sup>− 1</sup> of FA-CAP-COOHMWCNTs was found to be 29.27 ± 2.59% and IC<sub>50</sub> value was observed to be 22.71 µg × mL<sup>− 1</sup>. Subsequently, in vivo anticancer activity of FA-CAP-COOHMWCNTs was performed against 7,12-dimethylbenz(a) anthracene (DMBA)-induced breast cancer in female Wistar rats. After 21 days of treatment with FA-CAP-COOHMWCNTs, breast cancer-induced rats showed a significant reduction in mammary tumor size, and elevated levels of antioxidant enzymes in serum/breast tissue. The most powerful antioxidant effects were seen in the medium dose (5 mg × kg<sup>− 1</sup>) of FA-CAP-COOHMWCNTs, which also caused tumors to shrink significantly, almost as much as the standard drug (doxorubicin). Histopathological studies also showed near-normal architecture of breast tissue. Altogether, it can be interpreted that FA-CAP-COOHMWCNTs have antiproliferative efficacy against breast tumor progression in breast cancer-induced rats.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 8","pages":"2849 - 2869"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Capsaicin-Entangled Multi-Walled Carbon Nanotubes Against Breast Cancer: A Theoretical and Experimental Approach\",\"authors\":\"Govardhan Katta Radhakrishna,&nbsp;Sameera Hammigi Ramesh,&nbsp;Shannon D. Almeida,&nbsp;Golla Sireesha,&nbsp;Soundarya Ramesh,&nbsp;Panneerselvam Theivendren,&nbsp;A. Santhana Krishna Kumar,&nbsp;Kumarappan Chidamabaram,&nbsp;Damodar Nayak Ammunje,&nbsp;Selvaraj Kunjiappan,&nbsp;Parasuraman Pavadai\",\"doi\":\"10.1007/s10876-024-02694-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Conventional treatment strategies suffer from a lack of solubility, low bioavailability at the target site, a lack of target specificity, and indiscriminate drug distribution, all of which lead to drug resistance. Therefore, the present study aimed to deliver capsaicin into breast cancer cells through folic acid-conjugated capsaicin-loaded carboxylic acid-functionalised multiwalled carbon nanotubes (FA-CAP-COOHMWCNTs). FA-CAP-COOHMWCNTs was formulated and characterized by FTIR (Fourier transform infrared spectroscopy), SEM (Scanning electron microscopy), HR-TEM (High-resolution transmission electron microscopy), and XRD (X-ray diffraction) analysis. In silico studies demonstrated that the active molecule, capsaicin can strongly bind onto C-SRC kinase receptor to suppress cancer progression. The in vitro cellular viability of MCF-7 breast cancer cells after 24h treatment with 100 µg × mL<sup>− 1</sup> of FA-CAP-COOHMWCNTs was found to be 29.27 ± 2.59% and IC<sub>50</sub> value was observed to be 22.71 µg × mL<sup>− 1</sup>. Subsequently, in vivo anticancer activity of FA-CAP-COOHMWCNTs was performed against 7,12-dimethylbenz(a) anthracene (DMBA)-induced breast cancer in female Wistar rats. After 21 days of treatment with FA-CAP-COOHMWCNTs, breast cancer-induced rats showed a significant reduction in mammary tumor size, and elevated levels of antioxidant enzymes in serum/breast tissue. The most powerful antioxidant effects were seen in the medium dose (5 mg × kg<sup>− 1</sup>) of FA-CAP-COOHMWCNTs, which also caused tumors to shrink significantly, almost as much as the standard drug (doxorubicin). Histopathological studies also showed near-normal architecture of breast tissue. Altogether, it can be interpreted that FA-CAP-COOHMWCNTs have antiproliferative efficacy against breast tumor progression in breast cancer-induced rats.</p></div>\",\"PeriodicalId\":618,\"journal\":{\"name\":\"Journal of Cluster Science\",\"volume\":\"35 8\",\"pages\":\"2849 - 2869\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cluster Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10876-024-02694-x\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cluster Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10876-024-02694-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

传统的治疗策略存在溶解度不足、靶点生物利用度低、缺乏靶点特异性以及药物分布不均等问题,所有这些都会导致耐药性的产生。因此,本研究旨在通过叶酸共轭辣椒素负载羧酸功能化多壁碳纳米管(FA-CAP-COOHMWCNTs)向乳腺癌细胞递送辣椒素。FA-CAP-COOHMWCNTs 由傅立叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)、高分辨率透射电子显微镜(HR-TEM)和 X 射线衍射(XRD)分析配制而成。硅学研究表明,活性分子辣椒素能与 C-SRC 激酶受体紧密结合,从而抑制癌症的发展。用 100 µg × mL- 1 的 FA-CAP-COOHMWCNTs 处理 MCF-7 乳腺癌细胞 24 小时后,发现其体外细胞存活率为 29.27 ± 2.59%,IC50 值为 22.71 µg × mL- 1。随后,对 7,12 二甲基苯(a)蒽(DMBA)诱导的雌性 Wistar 大鼠乳腺癌进行了 FA-CAP-COOHMWCNTs 体内抗癌活性研究。使用 FA-CAP-COOHMWCNTs 治疗 21 天后,诱发乳腺癌的大鼠的乳腺肿瘤明显缩小,血清/乳腺组织中的抗氧化酶水平升高。中等剂量(5 毫克×千克-1)的 FA-CAP-COOHMWCNT 具有最强大的抗氧化效果,它还能使肿瘤明显缩小,缩小程度几乎与标准药物(多柔比星)相当。组织病理学研究也显示乳腺组织结构接近正常。综上所述,FA-CAP-COOHMWCNTs 对乳腺癌诱导大鼠的乳腺肿瘤具有抗增殖作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Capsaicin-Entangled Multi-Walled Carbon Nanotubes Against Breast Cancer: A Theoretical and Experimental Approach

Conventional treatment strategies suffer from a lack of solubility, low bioavailability at the target site, a lack of target specificity, and indiscriminate drug distribution, all of which lead to drug resistance. Therefore, the present study aimed to deliver capsaicin into breast cancer cells through folic acid-conjugated capsaicin-loaded carboxylic acid-functionalised multiwalled carbon nanotubes (FA-CAP-COOHMWCNTs). FA-CAP-COOHMWCNTs was formulated and characterized by FTIR (Fourier transform infrared spectroscopy), SEM (Scanning electron microscopy), HR-TEM (High-resolution transmission electron microscopy), and XRD (X-ray diffraction) analysis. In silico studies demonstrated that the active molecule, capsaicin can strongly bind onto C-SRC kinase receptor to suppress cancer progression. The in vitro cellular viability of MCF-7 breast cancer cells after 24h treatment with 100 µg × mL− 1 of FA-CAP-COOHMWCNTs was found to be 29.27 ± 2.59% and IC50 value was observed to be 22.71 µg × mL− 1. Subsequently, in vivo anticancer activity of FA-CAP-COOHMWCNTs was performed against 7,12-dimethylbenz(a) anthracene (DMBA)-induced breast cancer in female Wistar rats. After 21 days of treatment with FA-CAP-COOHMWCNTs, breast cancer-induced rats showed a significant reduction in mammary tumor size, and elevated levels of antioxidant enzymes in serum/breast tissue. The most powerful antioxidant effects were seen in the medium dose (5 mg × kg− 1) of FA-CAP-COOHMWCNTs, which also caused tumors to shrink significantly, almost as much as the standard drug (doxorubicin). Histopathological studies also showed near-normal architecture of breast tissue. Altogether, it can be interpreted that FA-CAP-COOHMWCNTs have antiproliferative efficacy against breast tumor progression in breast cancer-induced rats.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cluster Science
Journal of Cluster Science 化学-无机化学与核化学
CiteScore
6.70
自引率
0.00%
发文量
166
审稿时长
3 months
期刊介绍: The journal publishes the following types of papers: (a) original and important research; (b) authoritative comprehensive reviews or short overviews of topics of current interest; (c) brief but urgent communications on new significant research; and (d) commentaries intended to foster the exchange of innovative or provocative ideas, and to encourage dialogue, amongst researchers working in different cluster disciplines.
期刊最新文献
Preparation of Materials Based on Metal Carbonate Nanoparticles for Photodegradation of Organic Pollutants Mercaptan Ligand Effect in Determining the Geometric Structures of Silver Nanoclusters Next-Generation Arsenic Sensors: Advances in Zero-Dimensional (0D) Carbon Quantum Dots Synthesis and Application of Zr MOF UiO-66 Decorated with Folic Acid-Conjugated Poly Ethylene Glycol as a Strong Nanocarrier for the Targeted Drug Delivery of Epirubicin Biogenic Copper/Zinc Oxide Nanocomposites from Bixa orellana: Anticancer Effects through ROS Generation and Apoptosis Induction in Cervical Carcinoma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1