用于增强染料降解的 TiO2-SnO2 纳米复合材料中的光驱动电荷转移机制

IF 2.7 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Journal of Cluster Science Pub Date : 2024-10-13 DOI:10.1007/s10876-024-02709-7
M. S. Gopika, Arsha Sunil, S. Jayasudha, Prabitha B. Nair
{"title":"用于增强染料降解的 TiO2-SnO2 纳米复合材料中的光驱动电荷转移机制","authors":"M. S. Gopika,&nbsp;Arsha Sunil,&nbsp;S. Jayasudha,&nbsp;Prabitha B. Nair","doi":"10.1007/s10876-024-02709-7","DOIUrl":null,"url":null,"abstract":"<div><p>The development of photocatalysts that can efficiently remove organic pollutants is crucial for environmental clean-up. In this study, we present the synthesis of stable TiO<sub>2</sub>-SnO<sub>2</sub> nanocomposites using the sol-gel method. Various characterization techniques were employed to analyze the structural, morphological, and optical properties of the samples. The photocatalytic efficiency of the nanocomposites was assessed by examining the degradation of Congo red (CR) dye under sunlight. All samples exhibited over 90% degradation within 2 h, with the optimized sample achieving 99.0% efficiency and a rate constant of 3.3 × 10<sup>− 2</sup> min<sup>− 1</sup>. The stability of the photocatalyst was validated through reusability tests, which showed more than 90% efficiency even after five cycles. The photocatalytic mechanism is thoroughly explained using band edge positions and effective charge transfer processes due to the formation of a heterojunction. Additionally, BET analysis and zeta potential measurements were conducted to gain a deeper understanding of the catalytic process.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 8","pages":"3153 - 3165"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photo-Driven Charge Transfer Mechanism in TiO2-SnO2 Nanocomposites for Enhanced Dye Degradation\",\"authors\":\"M. S. Gopika,&nbsp;Arsha Sunil,&nbsp;S. Jayasudha,&nbsp;Prabitha B. Nair\",\"doi\":\"10.1007/s10876-024-02709-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development of photocatalysts that can efficiently remove organic pollutants is crucial for environmental clean-up. In this study, we present the synthesis of stable TiO<sub>2</sub>-SnO<sub>2</sub> nanocomposites using the sol-gel method. Various characterization techniques were employed to analyze the structural, morphological, and optical properties of the samples. The photocatalytic efficiency of the nanocomposites was assessed by examining the degradation of Congo red (CR) dye under sunlight. All samples exhibited over 90% degradation within 2 h, with the optimized sample achieving 99.0% efficiency and a rate constant of 3.3 × 10<sup>− 2</sup> min<sup>− 1</sup>. The stability of the photocatalyst was validated through reusability tests, which showed more than 90% efficiency even after five cycles. The photocatalytic mechanism is thoroughly explained using band edge positions and effective charge transfer processes due to the formation of a heterojunction. Additionally, BET analysis and zeta potential measurements were conducted to gain a deeper understanding of the catalytic process.</p></div>\",\"PeriodicalId\":618,\"journal\":{\"name\":\"Journal of Cluster Science\",\"volume\":\"35 8\",\"pages\":\"3153 - 3165\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cluster Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10876-024-02709-7\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cluster Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10876-024-02709-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

开发能高效去除有机污染物的光催化剂对环境清洁至关重要。本研究采用溶胶-凝胶法合成了稳定的 TiO2-SnO2 纳米复合材料。采用多种表征技术分析了样品的结构、形态和光学特性。通过检测日光下刚果红(CR)染料的降解情况,评估了纳米复合材料的光催化效率。所有样品在 2 小时内的降解率均超过 90%,优化样品的降解率达到 99.0%,速率常数为 3.3 × 10- 2 min-1。光催化剂的稳定性通过可重复使用性测试得到了验证,测试结果表明,即使经过五个循环,光催化剂的效率也超过了 90%。由于异质结的形成,利用带边位置和有效的电荷转移过程对光催化机理进行了详尽的解释。此外,还进行了 BET 分析和 zeta 电位测量,以深入了解催化过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Photo-Driven Charge Transfer Mechanism in TiO2-SnO2 Nanocomposites for Enhanced Dye Degradation

The development of photocatalysts that can efficiently remove organic pollutants is crucial for environmental clean-up. In this study, we present the synthesis of stable TiO2-SnO2 nanocomposites using the sol-gel method. Various characterization techniques were employed to analyze the structural, morphological, and optical properties of the samples. The photocatalytic efficiency of the nanocomposites was assessed by examining the degradation of Congo red (CR) dye under sunlight. All samples exhibited over 90% degradation within 2 h, with the optimized sample achieving 99.0% efficiency and a rate constant of 3.3 × 10− 2 min− 1. The stability of the photocatalyst was validated through reusability tests, which showed more than 90% efficiency even after five cycles. The photocatalytic mechanism is thoroughly explained using band edge positions and effective charge transfer processes due to the formation of a heterojunction. Additionally, BET analysis and zeta potential measurements were conducted to gain a deeper understanding of the catalytic process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cluster Science
Journal of Cluster Science 化学-无机化学与核化学
CiteScore
6.70
自引率
0.00%
发文量
166
审稿时长
3 months
期刊介绍: The journal publishes the following types of papers: (a) original and important research; (b) authoritative comprehensive reviews or short overviews of topics of current interest; (c) brief but urgent communications on new significant research; and (d) commentaries intended to foster the exchange of innovative or provocative ideas, and to encourage dialogue, amongst researchers working in different cluster disciplines.
期刊最新文献
Synthesis of MIPs@H2S Nanoparticle Adsorbent for the Specific Adsorption of Hazardous Hydrogen Sulfide Gas: Approach to Optimization State-of-the-art of Synthesized PANI/NiCo2O4/CeO2 Nanocomposites by One-Step Polymerization for Use in Photodetectors Enhanced Elimination of Dyes from Aqueous Solution and Antioxidant Activity Using Ascorbic Acid-Functionalized Iron Oxide Nanocomposites Boosted Antioxidant and Photocatalytic Power: Reusable PEG-Coated Iron Oxide Nanocomposites for Effective Cephalexin and BCB Dye Degradation Potential of Silymarin and Metformin Co-Loaded Nanostructured Lipid Carriers Containing Mucoadhesive Thermogel on KB Cells of Oral Cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1