基于实验结果的未夯实饱和黄土结构动力构成模型

IF 3.7 2区 工程技术 Q3 ENGINEERING, ENVIRONMENTAL Bulletin of Engineering Geology and the Environment Pub Date : 2024-11-05 DOI:10.1007/s10064-024-03969-3
Yuwei Zhang, Lianbaichao Liu, Zhanping Song, Youchuan Wu, Fang Zheng
{"title":"基于实验结果的未夯实饱和黄土结构动力构成模型","authors":"Yuwei Zhang,&nbsp;Lianbaichao Liu,&nbsp;Zhanping Song,&nbsp;Youchuan Wu,&nbsp;Fang Zheng","doi":"10.1007/s10064-024-03969-3","DOIUrl":null,"url":null,"abstract":"<div><p>Uncompacted saturated loess retains its residual pore structure without artificial compaction, making it highly sensitive to environmental changes such as dehydration-rehydration cycles. This study investigates the dynamic characteristics of uncompacted saturated loess in the Xi'an area, where infrastructure projects are commonly affected by the soil's instability. Dynamic triaxial tests were conducted under varying confining pressures and dehydration-rehydration cycles to examine the dynamic stress–strain relationship, dynamic modulus, and damping ratio variation. The methodology involved multi-stage loading using dynamic triaxial equipment, with cycles of drying and rehydration applied to replicate field conditions. A hyperbolic tangent function was used to model the dynamic stress–strain behavior, and structural parameters m1​ and m2​ were introduced to quantify the soil's stability and variability. Key findings show that dynamic stress increases with dehydration-rehydration cycles, while dynamic modulus and damping ratio decrease, especially during the initial cycles. The results provide critical insights into the behavior of uncompacted saturated loess under dynamic conditions, offering practical guidelines for managing soil stability in infrastructure projects across the Xi'an region.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"83 12","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural dynamic constitutive model of uncompacted saturated loess based on experimental results\",\"authors\":\"Yuwei Zhang,&nbsp;Lianbaichao Liu,&nbsp;Zhanping Song,&nbsp;Youchuan Wu,&nbsp;Fang Zheng\",\"doi\":\"10.1007/s10064-024-03969-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Uncompacted saturated loess retains its residual pore structure without artificial compaction, making it highly sensitive to environmental changes such as dehydration-rehydration cycles. This study investigates the dynamic characteristics of uncompacted saturated loess in the Xi'an area, where infrastructure projects are commonly affected by the soil's instability. Dynamic triaxial tests were conducted under varying confining pressures and dehydration-rehydration cycles to examine the dynamic stress–strain relationship, dynamic modulus, and damping ratio variation. The methodology involved multi-stage loading using dynamic triaxial equipment, with cycles of drying and rehydration applied to replicate field conditions. A hyperbolic tangent function was used to model the dynamic stress–strain behavior, and structural parameters m1​ and m2​ were introduced to quantify the soil's stability and variability. Key findings show that dynamic stress increases with dehydration-rehydration cycles, while dynamic modulus and damping ratio decrease, especially during the initial cycles. The results provide critical insights into the behavior of uncompacted saturated loess under dynamic conditions, offering practical guidelines for managing soil stability in infrastructure projects across the Xi'an region.</p></div>\",\"PeriodicalId\":500,\"journal\":{\"name\":\"Bulletin of Engineering Geology and the Environment\",\"volume\":\"83 12\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Engineering Geology and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10064-024-03969-3\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-024-03969-3","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

未经夯实的饱和黄土在未经人工夯实的情况下仍能保持其残余孔隙结构,因此对脱水-水化循环等环境变化非常敏感。本研究调查了西安地区未夯实饱和黄土的动态特性,因为该地区的基础设施项目通常会受到土壤不稳定性的影响。在不同的约束压力和脱水-补水循环条件下进行了动态三轴试验,以研究动态应力-应变关系、动态模量和阻尼比的变化。试验方法包括使用动态三轴设备进行多阶段加载,并应用干燥和再水化循环来复制现场条件。采用双曲正切函数来模拟动态应力-应变行为,并引入结构参数 m1 和 m2 来量化土壤的稳定性和可变性。主要研究结果表明,动应力随着脱水-补水循环的进行而增加,而动模量和阻尼比则降低,尤其是在初始循环期间。这些结果为了解未夯实饱和黄土在动态条件下的行为提供了重要依据,为西安地区基础设施项目的土壤稳定性管理提供了实用指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structural dynamic constitutive model of uncompacted saturated loess based on experimental results

Uncompacted saturated loess retains its residual pore structure without artificial compaction, making it highly sensitive to environmental changes such as dehydration-rehydration cycles. This study investigates the dynamic characteristics of uncompacted saturated loess in the Xi'an area, where infrastructure projects are commonly affected by the soil's instability. Dynamic triaxial tests were conducted under varying confining pressures and dehydration-rehydration cycles to examine the dynamic stress–strain relationship, dynamic modulus, and damping ratio variation. The methodology involved multi-stage loading using dynamic triaxial equipment, with cycles of drying and rehydration applied to replicate field conditions. A hyperbolic tangent function was used to model the dynamic stress–strain behavior, and structural parameters m1​ and m2​ were introduced to quantify the soil's stability and variability. Key findings show that dynamic stress increases with dehydration-rehydration cycles, while dynamic modulus and damping ratio decrease, especially during the initial cycles. The results provide critical insights into the behavior of uncompacted saturated loess under dynamic conditions, offering practical guidelines for managing soil stability in infrastructure projects across the Xi'an region.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of Engineering Geology and the Environment
Bulletin of Engineering Geology and the Environment 工程技术-地球科学综合
CiteScore
7.10
自引率
11.90%
发文量
445
审稿时长
4.1 months
期刊介绍: Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces: • the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations; • the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change; • the assessment of the mechanical and hydrological behaviour of soil and rock masses; • the prediction of changes to the above properties with time; • the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.
期刊最新文献
Regional dynamic hazard assessment of rainfall–induced landslide guided by geographic similarity A strength prediction model of soil-rock mixture with varying rock proportions Analytical solution for concrete/rock interface shearing under CNS considering interlocking effect and wear behavior and its application Desiccation-induced cracking and deformation characteristics in compacted loess: insights from electrical resistivity and microstructure analysis Relation between the sliding friction angle of rock joints and the friction angle of intact cores at the brittle-ductile transition: An experimental study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1