A. N. Zhirabok, V. F. Filaretov, A. V. Zuev, A. E. Shumsky
{"title":"完全或部分故障解耦控制系统的容错方法","authors":"A. N. Zhirabok, V. F. Filaretov, A. V. Zuev, A. E. Shumsky","doi":"10.1134/S0005117924700024","DOIUrl":null,"url":null,"abstract":"<p>This paper considers technical systems described by nonlinear dynamic models. The fault tolerance property of such systems is ensured by introducing feedback with full or partial fault decoupling. The solution is based on separating a subsystem insensitive or minimally sensitive to faults and its subsequent analysis. For this purpose, a logical-dynamic approach is used, which operates only linear algebra methods. An illustrative practical example is provided.</p>","PeriodicalId":55411,"journal":{"name":"Automation and Remote Control","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Fault Tolerance Method for Control Systems with Full or Partial Fault Decoupling\",\"authors\":\"A. N. Zhirabok, V. F. Filaretov, A. V. Zuev, A. E. Shumsky\",\"doi\":\"10.1134/S0005117924700024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper considers technical systems described by nonlinear dynamic models. The fault tolerance property of such systems is ensured by introducing feedback with full or partial fault decoupling. The solution is based on separating a subsystem insensitive or minimally sensitive to faults and its subsequent analysis. For this purpose, a logical-dynamic approach is used, which operates only linear algebra methods. An illustrative practical example is provided.</p>\",\"PeriodicalId\":55411,\"journal\":{\"name\":\"Automation and Remote Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation and Remote Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0005117924700024\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation and Remote Control","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1134/S0005117924700024","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
A Fault Tolerance Method for Control Systems with Full or Partial Fault Decoupling
This paper considers technical systems described by nonlinear dynamic models. The fault tolerance property of such systems is ensured by introducing feedback with full or partial fault decoupling. The solution is based on separating a subsystem insensitive or minimally sensitive to faults and its subsequent analysis. For this purpose, a logical-dynamic approach is used, which operates only linear algebra methods. An illustrative practical example is provided.
期刊介绍:
Automation and Remote Control is one of the first journals on control theory. The scope of the journal is control theory problems and applications. The journal publishes reviews, original articles, and short communications (deterministic, stochastic, adaptive, and robust formulations) and its applications (computer control, components and instruments, process control, social and economy control, etc.).