Yani Xiong, Mukhtar Iderawumi Abdulraheem, Linze Li, Abiodun Yusuff Moshood, Wei Zhang, Yanyan Zhang, Jiandong Hu
{"title":"评估地下水脆弱性的空间分析技术:积极保护和缓解战略的战略方法","authors":"Yani Xiong, Mukhtar Iderawumi Abdulraheem, Linze Li, Abiodun Yusuff Moshood, Wei Zhang, Yanyan Zhang, Jiandong Hu","doi":"10.1007/s12665-024-11930-6","DOIUrl":null,"url":null,"abstract":"<div><p>Groundwater is a critical resource that supports agriculture and ecosystems which is increasingly threatened by anthropogenic activities and climate change. Despite the advancements in spatial analysis methods, there remains a lack of comprehensive reviews that synthesize these techniques specifically for groundwater vulnerability assessment as existing literature often focuses on isolated methodologies without integrating them into a cohesive framework that addresses the complexities of groundwater systems. Hence, the need for proactive conservation and mitigation strategies on how spatial analysis can enhance groundwater vulnerability assessments is crucial for developing effective policies and practices aimed at safeguarding this vital resource. This review evaluates various spatial analysis techniques used in assessing groundwater vulnerability, identify their strengths and limitations, and propose a strategic framework for their application in conservation efforts. A systematic literature review was conducted, focusing on peer-reviewed articles published in the last two decades. Techniques such as remote sensing (RS), Geographic Information Systems (GIS), Multi-Criteria Decision Analysis (MCDA), and statistical modelling were analyzed in terms of their applicability to groundwater vulnerability assessments. The findings reveal that spatial analysis techniques significantly enhance the accuracy of groundwater vulnerability assessments (GVAs) by incorporating diverse data sources such as land use, soil characteristics, and hydrological features. Key results indicate that GIS-based models provide robust frameworks for identifying vulnerable areas, while MCDA facilitates stakeholder engagement by integrating socio-economic factors into decision-making processes. The study concludes that a strategic approach combining various spatial analysis techniques offers a promising pathway for enhancing groundwater vulnerability assessments. This integrated methodology not only aids in identifying vulnerable areas but also supports informed decision-making processes regarding conservation efforts. However, future research should focus on developing standardized protocols for integrating diverse spatial analysis methods as well as longitudinal studies to assess the long-term effectiveness of implemented conservation strategies based on these assessments.</p></div>","PeriodicalId":542,"journal":{"name":"Environmental Earth Sciences","volume":"83 22","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial analysis techniques for assessing groundwater vulnerability: a strategic approach to proactive conservation and mitigation strategies\",\"authors\":\"Yani Xiong, Mukhtar Iderawumi Abdulraheem, Linze Li, Abiodun Yusuff Moshood, Wei Zhang, Yanyan Zhang, Jiandong Hu\",\"doi\":\"10.1007/s12665-024-11930-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Groundwater is a critical resource that supports agriculture and ecosystems which is increasingly threatened by anthropogenic activities and climate change. Despite the advancements in spatial analysis methods, there remains a lack of comprehensive reviews that synthesize these techniques specifically for groundwater vulnerability assessment as existing literature often focuses on isolated methodologies without integrating them into a cohesive framework that addresses the complexities of groundwater systems. Hence, the need for proactive conservation and mitigation strategies on how spatial analysis can enhance groundwater vulnerability assessments is crucial for developing effective policies and practices aimed at safeguarding this vital resource. This review evaluates various spatial analysis techniques used in assessing groundwater vulnerability, identify their strengths and limitations, and propose a strategic framework for their application in conservation efforts. A systematic literature review was conducted, focusing on peer-reviewed articles published in the last two decades. Techniques such as remote sensing (RS), Geographic Information Systems (GIS), Multi-Criteria Decision Analysis (MCDA), and statistical modelling were analyzed in terms of their applicability to groundwater vulnerability assessments. The findings reveal that spatial analysis techniques significantly enhance the accuracy of groundwater vulnerability assessments (GVAs) by incorporating diverse data sources such as land use, soil characteristics, and hydrological features. Key results indicate that GIS-based models provide robust frameworks for identifying vulnerable areas, while MCDA facilitates stakeholder engagement by integrating socio-economic factors into decision-making processes. The study concludes that a strategic approach combining various spatial analysis techniques offers a promising pathway for enhancing groundwater vulnerability assessments. This integrated methodology not only aids in identifying vulnerable areas but also supports informed decision-making processes regarding conservation efforts. However, future research should focus on developing standardized protocols for integrating diverse spatial analysis methods as well as longitudinal studies to assess the long-term effectiveness of implemented conservation strategies based on these assessments.</p></div>\",\"PeriodicalId\":542,\"journal\":{\"name\":\"Environmental Earth Sciences\",\"volume\":\"83 22\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Earth Sciences\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12665-024-11930-6\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Earth Sciences","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s12665-024-11930-6","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Spatial analysis techniques for assessing groundwater vulnerability: a strategic approach to proactive conservation and mitigation strategies
Groundwater is a critical resource that supports agriculture and ecosystems which is increasingly threatened by anthropogenic activities and climate change. Despite the advancements in spatial analysis methods, there remains a lack of comprehensive reviews that synthesize these techniques specifically for groundwater vulnerability assessment as existing literature often focuses on isolated methodologies without integrating them into a cohesive framework that addresses the complexities of groundwater systems. Hence, the need for proactive conservation and mitigation strategies on how spatial analysis can enhance groundwater vulnerability assessments is crucial for developing effective policies and practices aimed at safeguarding this vital resource. This review evaluates various spatial analysis techniques used in assessing groundwater vulnerability, identify their strengths and limitations, and propose a strategic framework for their application in conservation efforts. A systematic literature review was conducted, focusing on peer-reviewed articles published in the last two decades. Techniques such as remote sensing (RS), Geographic Information Systems (GIS), Multi-Criteria Decision Analysis (MCDA), and statistical modelling were analyzed in terms of their applicability to groundwater vulnerability assessments. The findings reveal that spatial analysis techniques significantly enhance the accuracy of groundwater vulnerability assessments (GVAs) by incorporating diverse data sources such as land use, soil characteristics, and hydrological features. Key results indicate that GIS-based models provide robust frameworks for identifying vulnerable areas, while MCDA facilitates stakeholder engagement by integrating socio-economic factors into decision-making processes. The study concludes that a strategic approach combining various spatial analysis techniques offers a promising pathway for enhancing groundwater vulnerability assessments. This integrated methodology not only aids in identifying vulnerable areas but also supports informed decision-making processes regarding conservation efforts. However, future research should focus on developing standardized protocols for integrating diverse spatial analysis methods as well as longitudinal studies to assess the long-term effectiveness of implemented conservation strategies based on these assessments.
期刊介绍:
Environmental Earth Sciences is an international multidisciplinary journal concerned with all aspects of interaction between humans, natural resources, ecosystems, special climates or unique geographic zones, and the earth:
Water and soil contamination caused by waste management and disposal practices
Environmental problems associated with transportation by land, air, or water
Geological processes that may impact biosystems or humans
Man-made or naturally occurring geological or hydrological hazards
Environmental problems associated with the recovery of materials from the earth
Environmental problems caused by extraction of minerals, coal, and ores, as well as oil and gas, water and alternative energy sources
Environmental impacts of exploration and recultivation – Environmental impacts of hazardous materials
Management of environmental data and information in data banks and information systems
Dissemination of knowledge on techniques, methods, approaches and experiences to improve and remediate the environment
In pursuit of these topics, the geoscientific disciplines are invited to contribute their knowledge and experience. Major disciplines include: hydrogeology, hydrochemistry, geochemistry, geophysics, engineering geology, remediation science, natural resources management, environmental climatology and biota, environmental geography, soil science and geomicrobiology.