{"title":"对橄榄进行密度分拣以控制橄榄油质量","authors":"Agnese Spadi, Ferdinando Corti, Giulia Angeloni, Luca Calamai, Piernicola Masella, Alessandro Parenti","doi":"10.1002/ejlt.202400017","DOIUrl":null,"url":null,"abstract":"<p>Extra virgin is the most valuable commercial category among olive oils, and its quality is influenced by various factors, among which the olive fruit plays a fundamental role. The olives that enter the mill exhibit significant variability in physical and chemical characteristics, potentially impacting the quality of the extracted oil. Therefore, selecting the olives in post-harvest could be a crucial step, especially for differentiating the final product and producing high-quality oil. This work aimed to conduct post-harvest densimetric sorting of the olives. For this purpose, a saline solution was used with different concentrations of salt over the 3 days of harvesting, which made it possible to divide the initial olive batch into two sub-batches with different densities. The respective oil was extracted from each sub-batch, called low- and high-density oils, respectively, and then appropriate physical–chemical analyses were performed to characterize both the olives and the oils. Although both oils were classified as extra virgin, significant differences were observed, with higher concentrations of phenolic and volatile compounds associated with positive sensory attributes in the low-density oils. Densimetric sorting of olives could represent a novel approach in the field of extra virgin olive oil production, enabling potential differentiation of the final product.</p><p><i>Practical Applications</i>: The results obtained in the study could be applied at an industrial level to classify olives in the post-harvest phase. This could allow to produce extra virgin olive oils (EVOO<b>s</b>) with different chemical and sensory characteristics, particularly in terms of volatile and phenolic compounds. This would make it possible to diversify the production of EVOO, satisfy the diverse needs of consumers, allow producers to be more competitive in the market, and, in general, improve the overall quality of the final product.</p>","PeriodicalId":11988,"journal":{"name":"European Journal of Lipid Science and Technology","volume":"126 11","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ejlt.202400017","citationCount":"0","resultStr":"{\"title\":\"Densimetric sorting of olives to control olive oil quality\",\"authors\":\"Agnese Spadi, Ferdinando Corti, Giulia Angeloni, Luca Calamai, Piernicola Masella, Alessandro Parenti\",\"doi\":\"10.1002/ejlt.202400017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Extra virgin is the most valuable commercial category among olive oils, and its quality is influenced by various factors, among which the olive fruit plays a fundamental role. The olives that enter the mill exhibit significant variability in physical and chemical characteristics, potentially impacting the quality of the extracted oil. Therefore, selecting the olives in post-harvest could be a crucial step, especially for differentiating the final product and producing high-quality oil. This work aimed to conduct post-harvest densimetric sorting of the olives. For this purpose, a saline solution was used with different concentrations of salt over the 3 days of harvesting, which made it possible to divide the initial olive batch into two sub-batches with different densities. The respective oil was extracted from each sub-batch, called low- and high-density oils, respectively, and then appropriate physical–chemical analyses were performed to characterize both the olives and the oils. Although both oils were classified as extra virgin, significant differences were observed, with higher concentrations of phenolic and volatile compounds associated with positive sensory attributes in the low-density oils. Densimetric sorting of olives could represent a novel approach in the field of extra virgin olive oil production, enabling potential differentiation of the final product.</p><p><i>Practical Applications</i>: The results obtained in the study could be applied at an industrial level to classify olives in the post-harvest phase. This could allow to produce extra virgin olive oils (EVOO<b>s</b>) with different chemical and sensory characteristics, particularly in terms of volatile and phenolic compounds. This would make it possible to diversify the production of EVOO, satisfy the diverse needs of consumers, allow producers to be more competitive in the market, and, in general, improve the overall quality of the final product.</p>\",\"PeriodicalId\":11988,\"journal\":{\"name\":\"European Journal of Lipid Science and Technology\",\"volume\":\"126 11\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ejlt.202400017\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Lipid Science and Technology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ejlt.202400017\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Lipid Science and Technology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ejlt.202400017","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Densimetric sorting of olives to control olive oil quality
Extra virgin is the most valuable commercial category among olive oils, and its quality is influenced by various factors, among which the olive fruit plays a fundamental role. The olives that enter the mill exhibit significant variability in physical and chemical characteristics, potentially impacting the quality of the extracted oil. Therefore, selecting the olives in post-harvest could be a crucial step, especially for differentiating the final product and producing high-quality oil. This work aimed to conduct post-harvest densimetric sorting of the olives. For this purpose, a saline solution was used with different concentrations of salt over the 3 days of harvesting, which made it possible to divide the initial olive batch into two sub-batches with different densities. The respective oil was extracted from each sub-batch, called low- and high-density oils, respectively, and then appropriate physical–chemical analyses were performed to characterize both the olives and the oils. Although both oils were classified as extra virgin, significant differences were observed, with higher concentrations of phenolic and volatile compounds associated with positive sensory attributes in the low-density oils. Densimetric sorting of olives could represent a novel approach in the field of extra virgin olive oil production, enabling potential differentiation of the final product.
Practical Applications: The results obtained in the study could be applied at an industrial level to classify olives in the post-harvest phase. This could allow to produce extra virgin olive oils (EVOOs) with different chemical and sensory characteristics, particularly in terms of volatile and phenolic compounds. This would make it possible to diversify the production of EVOO, satisfy the diverse needs of consumers, allow producers to be more competitive in the market, and, in general, improve the overall quality of the final product.
期刊介绍:
The European Journal of Lipid Science and Technology is a peer-reviewed journal publishing original research articles, reviews, and other contributions on lipid related topics in food science and technology, biomedical science including clinical and pre-clinical research, nutrition, animal science, plant and microbial lipids, (bio)chemistry, oleochemistry, biotechnology, processing, physical chemistry, and analytics including lipidomics. A major focus of the journal is the synthesis of health related topics with applied aspects.
Following is a selection of subject areas which are of special interest to EJLST:
Animal and plant products for healthier foods including strategic feeding and transgenic crops
Authentication and analysis of foods for ensuring food quality and safety
Bioavailability of PUFA and other nutrients
Dietary lipids and minor compounds, their specific roles in food products and in nutrition
Food technology and processing for safer and healthier products
Functional foods and nutraceuticals
Lipidomics
Lipid structuring and formulations
Oleochemistry, lipid-derived polymers and biomaterials
Processes using lipid-modifying enzymes
The scope is not restricted to these areas. Submissions on topics at the interface of basic research and applications are strongly encouraged. The journal is the official organ the European Federation for the Science and Technology of Lipids (Euro Fed Lipid).