{"title":"室温下光谱可调谐超快长波红外探测。","authors":"Tianyi Guo, Sayan Chandra, Arindam Dasgupta, Muhammad Waqas Shabbir, Aritra Biswas, Debashis Chanda","doi":"10.1021/acs.nanolett.4c03832","DOIUrl":null,"url":null,"abstract":"<p><p>Room-temperature longwave infrared (LWIR) detectors are preferred over cryogenically cooled solutions due to the cost effectiveness and ease of operation. The performance of present uncooled LWIR detectors such as microbolometers, is limited by reduced sensitivity, slow response time, and the lack of dynamic spectral tunability. Here, we present a graphene-based efficient room-temperature LWIR detector with high detectivity and fast response time utilizing its tunable optical and electronic characteristics. The inherent weak light absorption is enhanced by Dirac plasmons on the patterned graphene coupled to an optical cavity. The absorbed energy is converted into photovoltage by the Seebeck effect with an asymmetric carrier generation environment. Further, dynamic spectral tunability in the 8-12 μm LWIR band is achieved by electrostatic gating. The proposed detection platform paves the path to a fresh generation of uncooled graphene-based LWIR photodetectors for wide ranging applications such as molecular sensing, medical diagnostics, military, security and space.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectrally Tunable Ultrafast Long Wave Infrared Detection at Room Temperature.\",\"authors\":\"Tianyi Guo, Sayan Chandra, Arindam Dasgupta, Muhammad Waqas Shabbir, Aritra Biswas, Debashis Chanda\",\"doi\":\"10.1021/acs.nanolett.4c03832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Room-temperature longwave infrared (LWIR) detectors are preferred over cryogenically cooled solutions due to the cost effectiveness and ease of operation. The performance of present uncooled LWIR detectors such as microbolometers, is limited by reduced sensitivity, slow response time, and the lack of dynamic spectral tunability. Here, we present a graphene-based efficient room-temperature LWIR detector with high detectivity and fast response time utilizing its tunable optical and electronic characteristics. The inherent weak light absorption is enhanced by Dirac plasmons on the patterned graphene coupled to an optical cavity. The absorbed energy is converted into photovoltage by the Seebeck effect with an asymmetric carrier generation environment. Further, dynamic spectral tunability in the 8-12 μm LWIR band is achieved by electrostatic gating. The proposed detection platform paves the path to a fresh generation of uncooled graphene-based LWIR photodetectors for wide ranging applications such as molecular sensing, medical diagnostics, military, security and space.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c03832\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03832","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Spectrally Tunable Ultrafast Long Wave Infrared Detection at Room Temperature.
Room-temperature longwave infrared (LWIR) detectors are preferred over cryogenically cooled solutions due to the cost effectiveness and ease of operation. The performance of present uncooled LWIR detectors such as microbolometers, is limited by reduced sensitivity, slow response time, and the lack of dynamic spectral tunability. Here, we present a graphene-based efficient room-temperature LWIR detector with high detectivity and fast response time utilizing its tunable optical and electronic characteristics. The inherent weak light absorption is enhanced by Dirac plasmons on the patterned graphene coupled to an optical cavity. The absorbed energy is converted into photovoltage by the Seebeck effect with an asymmetric carrier generation environment. Further, dynamic spectral tunability in the 8-12 μm LWIR band is achieved by electrostatic gating. The proposed detection platform paves the path to a fresh generation of uncooled graphene-based LWIR photodetectors for wide ranging applications such as molecular sensing, medical diagnostics, military, security and space.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.