C A Priante-Silva, B H Godoi, R F Menegon, N S da Silva, C Pacheco-Soares
{"title":"与黑醋栗提取物相关的膜的抗肿瘤活性。","authors":"C A Priante-Silva, B H Godoi, R F Menegon, N S da Silva, C Pacheco-Soares","doi":"10.1590/1414-431X2024e14129","DOIUrl":null,"url":null,"abstract":"<p><p>Epithelial cancers, such as epidermoid cancer and some adenocarcinomas, affect surface areas that are generally more accessible to various treatments. However, this group of tumor cells has an aggressive behavior, leading to a high annual mortality rate. The development of a biomaterial that is non-invasive, can kill tumor cells, and prevent opportunistic infections is the basis for the treatment for this type of cancer. Therefore, the objective of this study was to develop a biomaterial from chitosan and A. oleracea extracts that exhibits cytotoxic action against the HEp-2 tumor cell line. Dried crude 90% ethanol extracts were obtained through ultrasound-assisted maceration, followed by liquid-liquid extraction to yield the butanol fraction. From these extracts, chitosan membranes were developed and evaluated for their antitumor activity against HEp-2 using viability tests with crystal violet and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, in addition to a wound healing test. The cytotoxic assays indicated a significant reduction in cell density and mitochondrial activity, especially at the concentration of 1000 µg/mL of crude extract. The butanol fraction had minimal effects on mitochondrial activity. The wound healing test demonstrated that the biomaterial and extract prevented closure of the wound created in the cell monolayer within 48 h of incubation and caused changes in cell morphology. In view of this, we concluded that a chitosan membrane associated with a 90% ethanol extract of Acmella oleracea exhibited cytotoxic activity is a potential alternative treatment for superficial cancers.</p>","PeriodicalId":9088,"journal":{"name":"Brazilian Journal of Medical and Biological Research","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540258/pdf/","citationCount":"0","resultStr":"{\"title\":\"Antitumor activity of membranes associated with Acmella oleracea extract.\",\"authors\":\"C A Priante-Silva, B H Godoi, R F Menegon, N S da Silva, C Pacheco-Soares\",\"doi\":\"10.1590/1414-431X2024e14129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Epithelial cancers, such as epidermoid cancer and some adenocarcinomas, affect surface areas that are generally more accessible to various treatments. However, this group of tumor cells has an aggressive behavior, leading to a high annual mortality rate. The development of a biomaterial that is non-invasive, can kill tumor cells, and prevent opportunistic infections is the basis for the treatment for this type of cancer. Therefore, the objective of this study was to develop a biomaterial from chitosan and A. oleracea extracts that exhibits cytotoxic action against the HEp-2 tumor cell line. Dried crude 90% ethanol extracts were obtained through ultrasound-assisted maceration, followed by liquid-liquid extraction to yield the butanol fraction. From these extracts, chitosan membranes were developed and evaluated for their antitumor activity against HEp-2 using viability tests with crystal violet and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, in addition to a wound healing test. The cytotoxic assays indicated a significant reduction in cell density and mitochondrial activity, especially at the concentration of 1000 µg/mL of crude extract. The butanol fraction had minimal effects on mitochondrial activity. The wound healing test demonstrated that the biomaterial and extract prevented closure of the wound created in the cell monolayer within 48 h of incubation and caused changes in cell morphology. In view of this, we concluded that a chitosan membrane associated with a 90% ethanol extract of Acmella oleracea exhibited cytotoxic activity is a potential alternative treatment for superficial cancers.</p>\",\"PeriodicalId\":9088,\"journal\":{\"name\":\"Brazilian Journal of Medical and Biological Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540258/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Journal of Medical and Biological Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1590/1414-431X2024e14129\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Medical and Biological Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1590/1414-431X2024e14129","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Antitumor activity of membranes associated with Acmella oleracea extract.
Epithelial cancers, such as epidermoid cancer and some adenocarcinomas, affect surface areas that are generally more accessible to various treatments. However, this group of tumor cells has an aggressive behavior, leading to a high annual mortality rate. The development of a biomaterial that is non-invasive, can kill tumor cells, and prevent opportunistic infections is the basis for the treatment for this type of cancer. Therefore, the objective of this study was to develop a biomaterial from chitosan and A. oleracea extracts that exhibits cytotoxic action against the HEp-2 tumor cell line. Dried crude 90% ethanol extracts were obtained through ultrasound-assisted maceration, followed by liquid-liquid extraction to yield the butanol fraction. From these extracts, chitosan membranes were developed and evaluated for their antitumor activity against HEp-2 using viability tests with crystal violet and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, in addition to a wound healing test. The cytotoxic assays indicated a significant reduction in cell density and mitochondrial activity, especially at the concentration of 1000 µg/mL of crude extract. The butanol fraction had minimal effects on mitochondrial activity. The wound healing test demonstrated that the biomaterial and extract prevented closure of the wound created in the cell monolayer within 48 h of incubation and caused changes in cell morphology. In view of this, we concluded that a chitosan membrane associated with a 90% ethanol extract of Acmella oleracea exhibited cytotoxic activity is a potential alternative treatment for superficial cancers.
期刊介绍:
The Brazilian Journal of Medical and Biological Research, founded by Michel Jamra, is edited and published monthly by the Associação Brasileira de Divulgação Científica (ABDC), a federation of Brazilian scientific societies:
- Sociedade Brasileira de Biofísica (SBBf)
- Sociedade Brasileira de Farmacologia e Terapêutica Experimental (SBFTE)
- Sociedade Brasileira de Fisiologia (SBFis)
- Sociedade Brasileira de Imunologia (SBI)
- Sociedade Brasileira de Investigação Clínica (SBIC)
- Sociedade Brasileira de Neurociências e Comportamento (SBNeC).