FEBio FINESSE:利用形状强化估算体内心脏瓣膜应变的开源有限元模拟方法。

IF 3 2区 医学 Q3 ENGINEERING, BIOMEDICAL Annals of Biomedical Engineering Pub Date : 2024-11-05 DOI:10.1007/s10439-024-03637-3
Devin W Laurence, Patricia M Sabin, Analise M Sulentic, Matthew Daemer, Steve A Maas, Jeffrey A Weiss, Matthew A Jolley
{"title":"FEBio FINESSE:利用形状强化估算体内心脏瓣膜应变的开源有限元模拟方法。","authors":"Devin W Laurence, Patricia M Sabin, Analise M Sulentic, Matthew Daemer, Steve A Maas, Jeffrey A Weiss, Matthew A Jolley","doi":"10.1007/s10439-024-03637-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Finite element simulations are an enticing tool to evaluate heart valve function; however, patient-specific simulations derived from 3D echocardiography are hampered by several technical challenges. The objective of this work is to develop an open-source method to enforce matching between finite element simulations and in vivo image-derived heart valve geometry in the absence of patient-specific material properties, leaflet thickness, and chordae tendineae structures.</p><p><strong>Methods: </strong>We evaluate FEBio Finite Element Simulations with Shape Enforcement (FINESSE) using three synthetic test cases considering a range of model complexity. FINESSE is then used to estimate the in vivo valve behavior and leaflet strains for three pediatric patients.</p><p><strong>Results: </strong>Our results suggest that FINESSE can be used to enforce finite element simulations to match an image-derived surface and estimate the first principal leaflet strains within <math><mrow><mo>±</mo> <mspace></mspace> <mn>0.03</mn></mrow> </math> strain. Key considerations include: (i) defining the user-defined penalty, (ii) omitting the leaflet commissures to improve simulation convergence, and (iii) emulating the chordae tendineae behavior via prescribed leaflet free edge motion or a chordae emulating force. In all patient-specific cases, FINESSE matched the target surface with median errors of approximately the smallest voxel dimension. Further analysis revealed valve-specific findings, such as the tricuspid valve leaflet strains of a 2-day old patient with HLHS being larger than those of two 13-year old patients.</p><p><strong>Conclusions: </strong>FEBio FINESSE can be used to estimate patient-specific in vivo heart valve leaflet strains. The development of this open-source pipeline will enable future studies to begin linking in vivo leaflet mechanics with patient outcomes.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FEBio FINESSE: An Open-Source Finite Element Simulation Approach to Estimate In Vivo Heart Valve Strains Using Shape Enforcement.\",\"authors\":\"Devin W Laurence, Patricia M Sabin, Analise M Sulentic, Matthew Daemer, Steve A Maas, Jeffrey A Weiss, Matthew A Jolley\",\"doi\":\"10.1007/s10439-024-03637-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Finite element simulations are an enticing tool to evaluate heart valve function; however, patient-specific simulations derived from 3D echocardiography are hampered by several technical challenges. The objective of this work is to develop an open-source method to enforce matching between finite element simulations and in vivo image-derived heart valve geometry in the absence of patient-specific material properties, leaflet thickness, and chordae tendineae structures.</p><p><strong>Methods: </strong>We evaluate FEBio Finite Element Simulations with Shape Enforcement (FINESSE) using three synthetic test cases considering a range of model complexity. FINESSE is then used to estimate the in vivo valve behavior and leaflet strains for three pediatric patients.</p><p><strong>Results: </strong>Our results suggest that FINESSE can be used to enforce finite element simulations to match an image-derived surface and estimate the first principal leaflet strains within <math><mrow><mo>±</mo> <mspace></mspace> <mn>0.03</mn></mrow> </math> strain. Key considerations include: (i) defining the user-defined penalty, (ii) omitting the leaflet commissures to improve simulation convergence, and (iii) emulating the chordae tendineae behavior via prescribed leaflet free edge motion or a chordae emulating force. In all patient-specific cases, FINESSE matched the target surface with median errors of approximately the smallest voxel dimension. Further analysis revealed valve-specific findings, such as the tricuspid valve leaflet strains of a 2-day old patient with HLHS being larger than those of two 13-year old patients.</p><p><strong>Conclusions: </strong>FEBio FINESSE can be used to estimate patient-specific in vivo heart valve leaflet strains. The development of this open-source pipeline will enable future studies to begin linking in vivo leaflet mechanics with patient outcomes.</p>\",\"PeriodicalId\":7986,\"journal\":{\"name\":\"Annals of Biomedical Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10439-024-03637-3\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10439-024-03637-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:有限元模拟是评估心脏瓣膜功能的诱人工具;然而,从三维超声心动图中得出的患者特异性模拟受到了一些技术挑战的阻碍。这项工作的目的是开发一种开源方法,在缺乏患者特异性材料属性、瓣叶厚度和腱索结构的情况下,实现有限元模拟与活体图像衍生的心脏瓣膜几何形状之间的匹配:方法:我们使用三个合成测试案例评估了具有形状执行功能的 FEBio 有限元模拟(FINESSE),并考虑了模型复杂度的范围。然后使用 FINESSE 估算三名儿科患者的体内瓣膜行为和瓣叶应变:结果:我们的研究结果表明,FINESSE 可用于强制有限元模拟与图像衍生表面相匹配,并估算出± 0.03 应变以内的第一主瓣叶应变。主要考虑因素包括(i)定义用户定义的惩罚,(ii)省略小叶突起以提高模拟收敛性,(iii)通过规定的小叶自由边缘运动或腱索模拟力来模拟腱索行为。在所有特定患者病例中,FINESSE 与目标表面匹配的中位误差约为最小体素尺寸。进一步的分析发现了瓣膜的特异性,例如一名出生两天的 HLHS 患者的三尖瓣瓣叶应变大于两名 13 岁患者的三尖瓣瓣叶应变:结论:FEBio FINESSE可用于估算特定患者的体内心脏瓣叶应变。这一开源管道的开发将使未来的研究能够开始将体内瓣叶力学与患者预后联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FEBio FINESSE: An Open-Source Finite Element Simulation Approach to Estimate In Vivo Heart Valve Strains Using Shape Enforcement.

Purpose: Finite element simulations are an enticing tool to evaluate heart valve function; however, patient-specific simulations derived from 3D echocardiography are hampered by several technical challenges. The objective of this work is to develop an open-source method to enforce matching between finite element simulations and in vivo image-derived heart valve geometry in the absence of patient-specific material properties, leaflet thickness, and chordae tendineae structures.

Methods: We evaluate FEBio Finite Element Simulations with Shape Enforcement (FINESSE) using three synthetic test cases considering a range of model complexity. FINESSE is then used to estimate the in vivo valve behavior and leaflet strains for three pediatric patients.

Results: Our results suggest that FINESSE can be used to enforce finite element simulations to match an image-derived surface and estimate the first principal leaflet strains within ± 0.03 strain. Key considerations include: (i) defining the user-defined penalty, (ii) omitting the leaflet commissures to improve simulation convergence, and (iii) emulating the chordae tendineae behavior via prescribed leaflet free edge motion or a chordae emulating force. In all patient-specific cases, FINESSE matched the target surface with median errors of approximately the smallest voxel dimension. Further analysis revealed valve-specific findings, such as the tricuspid valve leaflet strains of a 2-day old patient with HLHS being larger than those of two 13-year old patients.

Conclusions: FEBio FINESSE can be used to estimate patient-specific in vivo heart valve leaflet strains. The development of this open-source pipeline will enable future studies to begin linking in vivo leaflet mechanics with patient outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Biomedical Engineering
Annals of Biomedical Engineering 工程技术-工程:生物医学
CiteScore
7.50
自引率
15.80%
发文量
212
审稿时长
3 months
期刊介绍: Annals of Biomedical Engineering is an official journal of the Biomedical Engineering Society, publishing original articles in the major fields of bioengineering and biomedical engineering. The Annals is an interdisciplinary and international journal with the aim to highlight integrated approaches to the solutions of biological and biomedical problems.
期刊最新文献
In Silico Clinical Trial for Osteoporosis Treatments to Prevent Hip Fractures: Simulation of the Placebo Arm. A Comparative Analysis of Alpha and Beta Therapy in Prostate Cancer Using a 3D Image-Based Spatiotemporal Model. Statistical Shape Modeling to Determine Poromechanics of the Human Knee Joint. Clinical Validation of Non-invasive Simulation-Based Determination of Vascular Impedance, Wave Intensity, and Hydraulic Work in Patients Undergoing Transcatheter Aortic Valve Replacement. Correction: The Effect of Low-Dose CT Protocols on Shoulder Model-Based Tracking accuracy Using Biplane Videoradiography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1