Juan P Meneses, Ayyaz Qadir, Nirusha Surendran, Cristobal Arrieta, Cristian Tejos, Marcelo E Andia, Zhaolin Chen, Sergio Uribe
{"title":"利用扫描协议启发的深度学习方法,实现无偏且可重复的肝脏 MRI-PDFF 估计。","authors":"Juan P Meneses, Ayyaz Qadir, Nirusha Surendran, Cristobal Arrieta, Cristian Tejos, Marcelo E Andia, Zhaolin Chen, Sergio Uribe","doi":"10.1007/s00330-024-11164-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To estimate proton density fat fraction (PDFF) from chemical shift encoded (CSE) MR images using a deep learning (DL)-based method that is precise and robust to different MR scanners and acquisition echo times (TEs).</p><p><strong>Methods: </strong>Variable echo times neural network (VET-Net) is a two-stage framework that first estimates nonlinear variables of the CSE-MR signal model, to posteriorly estimate water/fat signal components using the least-squares method. VET-Net incorporates a vector with TEs as an auxiliary input, therefore enabling PDFF calculation with any TE setting. A single-site liver CSE-MRI dataset (188 subjects, 4146 axial slices) was considered, which was split into training (150 subjects), validation (18), and testing (20) subsets. Testing subjects were scanned using several protocols with different TEs, which we then used to measure the PDFF reproducibility coefficient (RDC) at two regions of interest (ROIs): the right posterior and left hepatic lobes. An open-source multi-site and multi-vendor fat-water phantom dataset was also used for PDFF bias assessment.</p><p><strong>Results: </strong>VET-Net showed RDCs of 1.71% and 1.04% on the right posterior and left hepatic lobes, respectively, across different TEs, which was comparable to a reference graph cuts-based method (RDCs = 1.71% and 0.86%). VET-Net also showed a smaller PDFF bias (-0.55%) than graph cuts (0.93%) when tested on a multi-site phantom dataset. Reproducibility (1.94% and 1.59%) and bias (-2.04%) were negatively affected when the auxiliary TE input was not considered.</p><p><strong>Conclusion: </strong>VET-Net provided unbiased and precise PDFF estimations using CSE-MR images from different hardware vendors and different TEs, outperforming conventional DL approaches.</p><p><strong>Key points: </strong>Question Reproducibility of liver PDFF DL-based approaches on different scan protocols or manufacturers is not validated. Findings VET-Net showed a PDFF bias of -0.55% on a multi-site phantom dataset, and RDCs of 1.71% and 1.04% at two liver ROIs. Clinical relevance VET-Net provides efficient, in terms of scan and processing times, and unbiased PDFF estimations across different MR scanners and scan protocols, and therefore it can be leveraged to expand the use of MRI-based liver fat quantification to assess hepatic steatosis.</p>","PeriodicalId":12076,"journal":{"name":"European Radiology","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unbiased and reproducible liver MRI-PDFF estimation using a scan protocol-informed deep learning method.\",\"authors\":\"Juan P Meneses, Ayyaz Qadir, Nirusha Surendran, Cristobal Arrieta, Cristian Tejos, Marcelo E Andia, Zhaolin Chen, Sergio Uribe\",\"doi\":\"10.1007/s00330-024-11164-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To estimate proton density fat fraction (PDFF) from chemical shift encoded (CSE) MR images using a deep learning (DL)-based method that is precise and robust to different MR scanners and acquisition echo times (TEs).</p><p><strong>Methods: </strong>Variable echo times neural network (VET-Net) is a two-stage framework that first estimates nonlinear variables of the CSE-MR signal model, to posteriorly estimate water/fat signal components using the least-squares method. VET-Net incorporates a vector with TEs as an auxiliary input, therefore enabling PDFF calculation with any TE setting. A single-site liver CSE-MRI dataset (188 subjects, 4146 axial slices) was considered, which was split into training (150 subjects), validation (18), and testing (20) subsets. Testing subjects were scanned using several protocols with different TEs, which we then used to measure the PDFF reproducibility coefficient (RDC) at two regions of interest (ROIs): the right posterior and left hepatic lobes. An open-source multi-site and multi-vendor fat-water phantom dataset was also used for PDFF bias assessment.</p><p><strong>Results: </strong>VET-Net showed RDCs of 1.71% and 1.04% on the right posterior and left hepatic lobes, respectively, across different TEs, which was comparable to a reference graph cuts-based method (RDCs = 1.71% and 0.86%). VET-Net also showed a smaller PDFF bias (-0.55%) than graph cuts (0.93%) when tested on a multi-site phantom dataset. Reproducibility (1.94% and 1.59%) and bias (-2.04%) were negatively affected when the auxiliary TE input was not considered.</p><p><strong>Conclusion: </strong>VET-Net provided unbiased and precise PDFF estimations using CSE-MR images from different hardware vendors and different TEs, outperforming conventional DL approaches.</p><p><strong>Key points: </strong>Question Reproducibility of liver PDFF DL-based approaches on different scan protocols or manufacturers is not validated. Findings VET-Net showed a PDFF bias of -0.55% on a multi-site phantom dataset, and RDCs of 1.71% and 1.04% at two liver ROIs. Clinical relevance VET-Net provides efficient, in terms of scan and processing times, and unbiased PDFF estimations across different MR scanners and scan protocols, and therefore it can be leveraged to expand the use of MRI-based liver fat quantification to assess hepatic steatosis.</p>\",\"PeriodicalId\":12076,\"journal\":{\"name\":\"European Radiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00330-024-11164-x\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00330-024-11164-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Unbiased and reproducible liver MRI-PDFF estimation using a scan protocol-informed deep learning method.
Objective: To estimate proton density fat fraction (PDFF) from chemical shift encoded (CSE) MR images using a deep learning (DL)-based method that is precise and robust to different MR scanners and acquisition echo times (TEs).
Methods: Variable echo times neural network (VET-Net) is a two-stage framework that first estimates nonlinear variables of the CSE-MR signal model, to posteriorly estimate water/fat signal components using the least-squares method. VET-Net incorporates a vector with TEs as an auxiliary input, therefore enabling PDFF calculation with any TE setting. A single-site liver CSE-MRI dataset (188 subjects, 4146 axial slices) was considered, which was split into training (150 subjects), validation (18), and testing (20) subsets. Testing subjects were scanned using several protocols with different TEs, which we then used to measure the PDFF reproducibility coefficient (RDC) at two regions of interest (ROIs): the right posterior and left hepatic lobes. An open-source multi-site and multi-vendor fat-water phantom dataset was also used for PDFF bias assessment.
Results: VET-Net showed RDCs of 1.71% and 1.04% on the right posterior and left hepatic lobes, respectively, across different TEs, which was comparable to a reference graph cuts-based method (RDCs = 1.71% and 0.86%). VET-Net also showed a smaller PDFF bias (-0.55%) than graph cuts (0.93%) when tested on a multi-site phantom dataset. Reproducibility (1.94% and 1.59%) and bias (-2.04%) were negatively affected when the auxiliary TE input was not considered.
Conclusion: VET-Net provided unbiased and precise PDFF estimations using CSE-MR images from different hardware vendors and different TEs, outperforming conventional DL approaches.
Key points: Question Reproducibility of liver PDFF DL-based approaches on different scan protocols or manufacturers is not validated. Findings VET-Net showed a PDFF bias of -0.55% on a multi-site phantom dataset, and RDCs of 1.71% and 1.04% at two liver ROIs. Clinical relevance VET-Net provides efficient, in terms of scan and processing times, and unbiased PDFF estimations across different MR scanners and scan protocols, and therefore it can be leveraged to expand the use of MRI-based liver fat quantification to assess hepatic steatosis.
期刊介绍:
European Radiology (ER) continuously updates scientific knowledge in radiology by publication of strong original articles and state-of-the-art reviews written by leading radiologists. A well balanced combination of review articles, original papers, short communications from European radiological congresses and information on society matters makes ER an indispensable source for current information in this field.
This is the Journal of the European Society of Radiology, and the official journal of a number of societies.
From 2004-2008 supplements to European Radiology were published under its companion, European Radiology Supplements, ISSN 1613-3749.