Shijie Ma, Xiaorong Huang, Xiaoqing Zhao, Lilong Liu, Li Zhang, Binjie Gan
{"title":"在小麦育种计划中利用抗寒基因和策略的现状。","authors":"Shijie Ma, Xiaorong Huang, Xiaoqing Zhao, Lilong Liu, Li Zhang, Binjie Gan","doi":"10.3389/fgene.2024.1473717","DOIUrl":null,"url":null,"abstract":"<p><p>Low temperature chilling is one of the major abiotic stresses affecting growth and yield of <i>Triticum aestivum L</i>. With global climate change, the risk of cold damage in wheat production has increased. In recent years, with the extensive research on wheat chilling resistance, especially the development of genetic engineering technology, the research on wheat chilling resistance has made great progress. This paper describes the mechanism of wheat cold damage, including cell membrane injury, cytoplasmic concentration increased as well as the imbalance of the ROS system. Mechanisms of cold resistance in wheat are summarised, including hormone signalling, transcription factor regulation, and the role of protective enzymes of the ROS system in cold resistanc. Functions of cloned wheat cold resistance genes are summarised, which will provide a reference for researchers to further understand and make use of cold resistance related genes in wheat. The current cold resistant breeding of wheat relies on the agronomic traits and observable indicators, molecular methods are lacked. A strategy for wheat cold-resistant breeding based on QTLs and gene technologies is proposed, with a view to breeding more cold-resistant varieties of wheat with the deepening of the research.</p>","PeriodicalId":12750,"journal":{"name":"Frontiers in Genetics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534866/pdf/","citationCount":"0","resultStr":"{\"title\":\"Current status for utilization of cold resistance genes and strategies in wheat breeding program.\",\"authors\":\"Shijie Ma, Xiaorong Huang, Xiaoqing Zhao, Lilong Liu, Li Zhang, Binjie Gan\",\"doi\":\"10.3389/fgene.2024.1473717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Low temperature chilling is one of the major abiotic stresses affecting growth and yield of <i>Triticum aestivum L</i>. With global climate change, the risk of cold damage in wheat production has increased. In recent years, with the extensive research on wheat chilling resistance, especially the development of genetic engineering technology, the research on wheat chilling resistance has made great progress. This paper describes the mechanism of wheat cold damage, including cell membrane injury, cytoplasmic concentration increased as well as the imbalance of the ROS system. Mechanisms of cold resistance in wheat are summarised, including hormone signalling, transcription factor regulation, and the role of protective enzymes of the ROS system in cold resistanc. Functions of cloned wheat cold resistance genes are summarised, which will provide a reference for researchers to further understand and make use of cold resistance related genes in wheat. The current cold resistant breeding of wheat relies on the agronomic traits and observable indicators, molecular methods are lacked. A strategy for wheat cold-resistant breeding based on QTLs and gene technologies is proposed, with a view to breeding more cold-resistant varieties of wheat with the deepening of the research.</p>\",\"PeriodicalId\":12750,\"journal\":{\"name\":\"Frontiers in Genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534866/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fgene.2024.1473717\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fgene.2024.1473717","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Current status for utilization of cold resistance genes and strategies in wheat breeding program.
Low temperature chilling is one of the major abiotic stresses affecting growth and yield of Triticum aestivum L. With global climate change, the risk of cold damage in wheat production has increased. In recent years, with the extensive research on wheat chilling resistance, especially the development of genetic engineering technology, the research on wheat chilling resistance has made great progress. This paper describes the mechanism of wheat cold damage, including cell membrane injury, cytoplasmic concentration increased as well as the imbalance of the ROS system. Mechanisms of cold resistance in wheat are summarised, including hormone signalling, transcription factor regulation, and the role of protective enzymes of the ROS system in cold resistanc. Functions of cloned wheat cold resistance genes are summarised, which will provide a reference for researchers to further understand and make use of cold resistance related genes in wheat. The current cold resistant breeding of wheat relies on the agronomic traits and observable indicators, molecular methods are lacked. A strategy for wheat cold-resistant breeding based on QTLs and gene technologies is proposed, with a view to breeding more cold-resistant varieties of wheat with the deepening of the research.
Frontiers in GeneticsBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
5.50
自引率
8.10%
发文量
3491
审稿时长
14 weeks
期刊介绍:
Frontiers in Genetics publishes rigorously peer-reviewed research on genes and genomes relating to all the domains of life, from humans to plants to livestock and other model organisms. Led by an outstanding Editorial Board of the world’s leading experts, this multidisciplinary, open-access journal is at the forefront of communicating cutting-edge research to researchers, academics, clinicians, policy makers and the public.
The study of inheritance and the impact of the genome on various biological processes is well documented. However, the majority of discoveries are still to come. A new era is seeing major developments in the function and variability of the genome, the use of genetic and genomic tools and the analysis of the genetic basis of various biological phenomena.