Xiang Wang, Jingmei Ma, Qi Qian, Le Gao, Yaqin Zhen, Yurou Tian, Liying Niu, Xinguo Wang
{"title":"超高效液相色谱-四极杆飞行时间串联质谱法快速鉴定体内外三花煎剂的化学成分及大黄蒽醌苷元的代谢物","authors":"Xiang Wang, Jingmei Ma, Qi Qian, Le Gao, Yaqin Zhen, Yurou Tian, Liying Niu, Xinguo Wang","doi":"10.1002/jssc.202400366","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Sanhua Decoction (SHD) is a classic prescription for the treatment of stroke in the clinic. Based on the combination strategy in vitro and in vivo, the chemical constituents of SHD were characterized by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry, and the metabolites of five effective anthraquinone aglycones (emodin, chrysophanol, rhein, aloe-emodin, and physcion) of rhubarb in SHD were studied. A total of 222 compounds were isolated and identified in vitro, including 50 flavonoids and their glycosides, 41 coumarins, 22 anthraquinones, 22 tannins, 14 phenylpropanoids, 16 alkaloids, 18 organic acids and their esters, 14 lignans, six anthrones, and 19 other compounds. A total of 111 prototype components were isolated and identified in vivo. Among them, 26, 82, 101, and 46 prototype components and 87 metabolites were detected in plasma, urine, feces, and bile for the first time. This study provides a basis for the identification of chemical components in vivo and in vitro and the analysis of potential pharmacodynamic components of SHD, and provides a basis for further study of pharmacodynamic mechanism.</p>\n </div>","PeriodicalId":17098,"journal":{"name":"Journal of separation science","volume":"47 21","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid Identification of Chemical Constituents of Sanhua Decoction in Vivo and in Vitro and the Metabolites of Rhubarb Anthraquinone Aglycone by Ultra-High Performance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Tandem Mass Spectrometry\",\"authors\":\"Xiang Wang, Jingmei Ma, Qi Qian, Le Gao, Yaqin Zhen, Yurou Tian, Liying Niu, Xinguo Wang\",\"doi\":\"10.1002/jssc.202400366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Sanhua Decoction (SHD) is a classic prescription for the treatment of stroke in the clinic. Based on the combination strategy in vitro and in vivo, the chemical constituents of SHD were characterized by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry, and the metabolites of five effective anthraquinone aglycones (emodin, chrysophanol, rhein, aloe-emodin, and physcion) of rhubarb in SHD were studied. A total of 222 compounds were isolated and identified in vitro, including 50 flavonoids and their glycosides, 41 coumarins, 22 anthraquinones, 22 tannins, 14 phenylpropanoids, 16 alkaloids, 18 organic acids and their esters, 14 lignans, six anthrones, and 19 other compounds. A total of 111 prototype components were isolated and identified in vivo. Among them, 26, 82, 101, and 46 prototype components and 87 metabolites were detected in plasma, urine, feces, and bile for the first time. This study provides a basis for the identification of chemical components in vivo and in vitro and the analysis of potential pharmacodynamic components of SHD, and provides a basis for further study of pharmacodynamic mechanism.</p>\\n </div>\",\"PeriodicalId\":17098,\"journal\":{\"name\":\"Journal of separation science\",\"volume\":\"47 21\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of separation science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jssc.202400366\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of separation science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jssc.202400366","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Rapid Identification of Chemical Constituents of Sanhua Decoction in Vivo and in Vitro and the Metabolites of Rhubarb Anthraquinone Aglycone by Ultra-High Performance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Tandem Mass Spectrometry
Sanhua Decoction (SHD) is a classic prescription for the treatment of stroke in the clinic. Based on the combination strategy in vitro and in vivo, the chemical constituents of SHD were characterized by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry, and the metabolites of five effective anthraquinone aglycones (emodin, chrysophanol, rhein, aloe-emodin, and physcion) of rhubarb in SHD were studied. A total of 222 compounds were isolated and identified in vitro, including 50 flavonoids and their glycosides, 41 coumarins, 22 anthraquinones, 22 tannins, 14 phenylpropanoids, 16 alkaloids, 18 organic acids and their esters, 14 lignans, six anthrones, and 19 other compounds. A total of 111 prototype components were isolated and identified in vivo. Among them, 26, 82, 101, and 46 prototype components and 87 metabolites were detected in plasma, urine, feces, and bile for the first time. This study provides a basis for the identification of chemical components in vivo and in vitro and the analysis of potential pharmacodynamic components of SHD, and provides a basis for further study of pharmacodynamic mechanism.
期刊介绍:
The Journal of Separation Science (JSS) is the most comprehensive source in separation science, since it covers all areas of chromatographic and electrophoretic separation methods in theory and practice, both in the analytical and in the preparative mode, solid phase extraction, sample preparation, and related techniques. Manuscripts on methodological or instrumental developments, including detection aspects, in particular mass spectrometry, as well as on innovative applications will also be published. Manuscripts on hyphenation, automation, and miniaturization are particularly welcome. Pre- and post-separation facets of a total analysis may be covered as well as the underlying logic of the development or application of a method.