莱茵衣藻叶绿体 ATP 合成酶氧化还原结构域在异养暗代谢中的活性调节

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Proceedings of the National Academy of Sciences of the United States of America Pub Date : 2024-11-12 Epub Date: 2024-11-06 DOI:10.1073/pnas.2412589121
Lando Lebok, Felix Buchert
{"title":"莱茵衣藻叶绿体 ATP 合成酶氧化还原结构域在异养暗代谢中的活性调节","authors":"Lando Lebok, Felix Buchert","doi":"10.1073/pnas.2412589121","DOIUrl":null,"url":null,"abstract":"<p><p>To maintain CO<sub>2</sub> fixation in the Calvin-Benson-Bassham cycle, multistep regulation of the chloroplast ATP synthase (CF<sub>1</sub>F<sub>o</sub>) is crucial to balance the ATP output of photosynthesis with protection of the apparatus. A well-studied mechanism is thiol modulation; a light/dark regulation through reversible cleavage of a disulfide in the CF<sub>1</sub>F<sub>o</sub> γ-subunit. The disulfide hampers ATP synthesis and hydrolysis reactions in dark-adapted CF<sub>1</sub>F<sub>o</sub> from land plants by increasing the required transmembrane electrochemical proton gradient ([Formula: see text]). Here, we show in <i>Chlamydomonas reinhardtii</i> that algal CF<sub>1</sub>F<sub>o</sub> is differently regulated in vivo. A specific hairpin structure in the γ-subunit redox domain disconnects activity regulation from disulfide formation in the dark. Electrochromic shift measurements suggested that the hairpin kept wild-type CF<sub>1</sub>F<sub>o</sub> active, whereas the enzyme was switched off in algal mutant cells expressing a plant-like hairpin structure. The hairpin segment swap resulted in an elevated [Formula: see text] threshold to activate plant-like CF<sub>1</sub>F<sub>o</sub>, increased by ~1.4 photosystem (PS) I charge separations. The resulting dark-equilibrated [Formula: see text] dropped in the mutants by ~2.7 PSI charge separation equivalents. Photobioreactor experiments showed no phenotypes in autotrophic aerated mutant cultures. In contrast, chlorophyll fluorescence measurements under heterotrophic dark conditions point to an altered dark metabolism in cells with the plant-like CF<sub>1</sub>F<sub>o</sub> as the result of bioenergetic deviations from wild-type. Our results suggest that the lifestyle of <i>C. reinhardtii</i> requires a specific CF<sub>1</sub>F<sub>o</sub> dark regulation that partakes in metabolic coupling between the chloroplast and acetate-fueled mitochondria.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The chloroplast ATP synthase redox domain in <i>Chlamydomonas reinhardtii</i> eludes activity regulation for heterotrophic dark metabolism.\",\"authors\":\"Lando Lebok, Felix Buchert\",\"doi\":\"10.1073/pnas.2412589121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To maintain CO<sub>2</sub> fixation in the Calvin-Benson-Bassham cycle, multistep regulation of the chloroplast ATP synthase (CF<sub>1</sub>F<sub>o</sub>) is crucial to balance the ATP output of photosynthesis with protection of the apparatus. A well-studied mechanism is thiol modulation; a light/dark regulation through reversible cleavage of a disulfide in the CF<sub>1</sub>F<sub>o</sub> γ-subunit. The disulfide hampers ATP synthesis and hydrolysis reactions in dark-adapted CF<sub>1</sub>F<sub>o</sub> from land plants by increasing the required transmembrane electrochemical proton gradient ([Formula: see text]). Here, we show in <i>Chlamydomonas reinhardtii</i> that algal CF<sub>1</sub>F<sub>o</sub> is differently regulated in vivo. A specific hairpin structure in the γ-subunit redox domain disconnects activity regulation from disulfide formation in the dark. Electrochromic shift measurements suggested that the hairpin kept wild-type CF<sub>1</sub>F<sub>o</sub> active, whereas the enzyme was switched off in algal mutant cells expressing a plant-like hairpin structure. The hairpin segment swap resulted in an elevated [Formula: see text] threshold to activate plant-like CF<sub>1</sub>F<sub>o</sub>, increased by ~1.4 photosystem (PS) I charge separations. The resulting dark-equilibrated [Formula: see text] dropped in the mutants by ~2.7 PSI charge separation equivalents. Photobioreactor experiments showed no phenotypes in autotrophic aerated mutant cultures. In contrast, chlorophyll fluorescence measurements under heterotrophic dark conditions point to an altered dark metabolism in cells with the plant-like CF<sub>1</sub>F<sub>o</sub> as the result of bioenergetic deviations from wild-type. Our results suggest that the lifestyle of <i>C. reinhardtii</i> requires a specific CF<sub>1</sub>F<sub>o</sub> dark regulation that partakes in metabolic coupling between the chloroplast and acetate-fueled mitochondria.</p>\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2412589121\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2412589121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

为了维持卡尔文-本森-巴塞尔循环中的二氧化碳固定,叶绿体 ATP 合酶(CF1Fo)的多步骤调节对于平衡光合作用的 ATP 输出和保护光合作用装置至关重要。硫醇调节是一种经过深入研究的机制;它是通过可逆地裂解 CF1Fo γ 亚基中的二硫化物来进行光/暗调节的。二硫化物通过增加所需的跨膜电化学质子梯度([公式:见正文]),阻碍了陆地植物中适应黑暗的 CF1Fo 的 ATP 合成和水解反应。在这里,我们在莱茵衣藻(Chlamydomonas reinhardtii)中展示了藻类 CF1Fo 在体内的不同调节方式。γ-亚基氧化还原结构域中的一个特定发夹结构切断了活性调节与黑暗中二硫化物形成之间的联系。电色移测量结果表明,发夹使野生型 CF1Fo 保持活性,而在表达植物样发夹结构的藻类突变体细胞中,该酶被关闭。发夹区段交换导致激活植物样 CF1Fo 的阈值升高[公式:见正文],增加了 ~1.4 光系统(PS)I 电荷分离。突变体由此产生的暗平衡[式:见正文]下降了约 2.7 PSI 电荷分离当量。光生物反应器实验表明,自养通气突变体培养物中没有出现表型。相反,在异养黑暗条件下进行的叶绿素荧光测量表明,具有植物样 CF1Fo 的细胞的黑暗代谢发生了改变,这是生物能偏离野生型的结果。我们的研究结果表明,C. reinhardtii 的生活方式需要特定的 CF1Fo 黑暗调节,它参与叶绿体和以乙酸为燃料的线粒体之间的代谢耦合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The chloroplast ATP synthase redox domain in Chlamydomonas reinhardtii eludes activity regulation for heterotrophic dark metabolism.

To maintain CO2 fixation in the Calvin-Benson-Bassham cycle, multistep regulation of the chloroplast ATP synthase (CF1Fo) is crucial to balance the ATP output of photosynthesis with protection of the apparatus. A well-studied mechanism is thiol modulation; a light/dark regulation through reversible cleavage of a disulfide in the CF1Fo γ-subunit. The disulfide hampers ATP synthesis and hydrolysis reactions in dark-adapted CF1Fo from land plants by increasing the required transmembrane electrochemical proton gradient ([Formula: see text]). Here, we show in Chlamydomonas reinhardtii that algal CF1Fo is differently regulated in vivo. A specific hairpin structure in the γ-subunit redox domain disconnects activity regulation from disulfide formation in the dark. Electrochromic shift measurements suggested that the hairpin kept wild-type CF1Fo active, whereas the enzyme was switched off in algal mutant cells expressing a plant-like hairpin structure. The hairpin segment swap resulted in an elevated [Formula: see text] threshold to activate plant-like CF1Fo, increased by ~1.4 photosystem (PS) I charge separations. The resulting dark-equilibrated [Formula: see text] dropped in the mutants by ~2.7 PSI charge separation equivalents. Photobioreactor experiments showed no phenotypes in autotrophic aerated mutant cultures. In contrast, chlorophyll fluorescence measurements under heterotrophic dark conditions point to an altered dark metabolism in cells with the plant-like CF1Fo as the result of bioenergetic deviations from wild-type. Our results suggest that the lifestyle of C. reinhardtii requires a specific CF1Fo dark regulation that partakes in metabolic coupling between the chloroplast and acetate-fueled mitochondria.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
期刊最新文献
Reply to Majer et al.: Negotiating policy action for transformation requires both sociopolitical and behavioral perspectives. The behavioral negotiation perspective can reveal how to navigate discord in sustainability transformations constructively. Deafness due to loss of a TRPV channel eliminates mating behavior in Aedes aegypti males. Extremely rapid, yet noncatastrophic, preservation of the flattened-feathered and 3D dinosaurs of the Early Cretaceous of China. Soft matter mechanics of baseball's Rubbing Mud.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1