{"title":"莱茵衣藻叶绿体 ATP 合成酶氧化还原结构域在异养暗代谢中的活性调节","authors":"Lando Lebok, Felix Buchert","doi":"10.1073/pnas.2412589121","DOIUrl":null,"url":null,"abstract":"<p><p>To maintain CO<sub>2</sub> fixation in the Calvin-Benson-Bassham cycle, multistep regulation of the chloroplast ATP synthase (CF<sub>1</sub>F<sub>o</sub>) is crucial to balance the ATP output of photosynthesis with protection of the apparatus. A well-studied mechanism is thiol modulation; a light/dark regulation through reversible cleavage of a disulfide in the CF<sub>1</sub>F<sub>o</sub> γ-subunit. The disulfide hampers ATP synthesis and hydrolysis reactions in dark-adapted CF<sub>1</sub>F<sub>o</sub> from land plants by increasing the required transmembrane electrochemical proton gradient ([Formula: see text]). Here, we show in <i>Chlamydomonas reinhardtii</i> that algal CF<sub>1</sub>F<sub>o</sub> is differently regulated in vivo. A specific hairpin structure in the γ-subunit redox domain disconnects activity regulation from disulfide formation in the dark. Electrochromic shift measurements suggested that the hairpin kept wild-type CF<sub>1</sub>F<sub>o</sub> active, whereas the enzyme was switched off in algal mutant cells expressing a plant-like hairpin structure. The hairpin segment swap resulted in an elevated [Formula: see text] threshold to activate plant-like CF<sub>1</sub>F<sub>o</sub>, increased by ~1.4 photosystem (PS) I charge separations. The resulting dark-equilibrated [Formula: see text] dropped in the mutants by ~2.7 PSI charge separation equivalents. Photobioreactor experiments showed no phenotypes in autotrophic aerated mutant cultures. In contrast, chlorophyll fluorescence measurements under heterotrophic dark conditions point to an altered dark metabolism in cells with the plant-like CF<sub>1</sub>F<sub>o</sub> as the result of bioenergetic deviations from wild-type. Our results suggest that the lifestyle of <i>C. reinhardtii</i> requires a specific CF<sub>1</sub>F<sub>o</sub> dark regulation that partakes in metabolic coupling between the chloroplast and acetate-fueled mitochondria.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The chloroplast ATP synthase redox domain in <i>Chlamydomonas reinhardtii</i> eludes activity regulation for heterotrophic dark metabolism.\",\"authors\":\"Lando Lebok, Felix Buchert\",\"doi\":\"10.1073/pnas.2412589121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To maintain CO<sub>2</sub> fixation in the Calvin-Benson-Bassham cycle, multistep regulation of the chloroplast ATP synthase (CF<sub>1</sub>F<sub>o</sub>) is crucial to balance the ATP output of photosynthesis with protection of the apparatus. A well-studied mechanism is thiol modulation; a light/dark regulation through reversible cleavage of a disulfide in the CF<sub>1</sub>F<sub>o</sub> γ-subunit. The disulfide hampers ATP synthesis and hydrolysis reactions in dark-adapted CF<sub>1</sub>F<sub>o</sub> from land plants by increasing the required transmembrane electrochemical proton gradient ([Formula: see text]). Here, we show in <i>Chlamydomonas reinhardtii</i> that algal CF<sub>1</sub>F<sub>o</sub> is differently regulated in vivo. A specific hairpin structure in the γ-subunit redox domain disconnects activity regulation from disulfide formation in the dark. Electrochromic shift measurements suggested that the hairpin kept wild-type CF<sub>1</sub>F<sub>o</sub> active, whereas the enzyme was switched off in algal mutant cells expressing a plant-like hairpin structure. The hairpin segment swap resulted in an elevated [Formula: see text] threshold to activate plant-like CF<sub>1</sub>F<sub>o</sub>, increased by ~1.4 photosystem (PS) I charge separations. The resulting dark-equilibrated [Formula: see text] dropped in the mutants by ~2.7 PSI charge separation equivalents. Photobioreactor experiments showed no phenotypes in autotrophic aerated mutant cultures. In contrast, chlorophyll fluorescence measurements under heterotrophic dark conditions point to an altered dark metabolism in cells with the plant-like CF<sub>1</sub>F<sub>o</sub> as the result of bioenergetic deviations from wild-type. Our results suggest that the lifestyle of <i>C. reinhardtii</i> requires a specific CF<sub>1</sub>F<sub>o</sub> dark regulation that partakes in metabolic coupling between the chloroplast and acetate-fueled mitochondria.</p>\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2412589121\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2412589121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
The chloroplast ATP synthase redox domain in Chlamydomonas reinhardtii eludes activity regulation for heterotrophic dark metabolism.
To maintain CO2 fixation in the Calvin-Benson-Bassham cycle, multistep regulation of the chloroplast ATP synthase (CF1Fo) is crucial to balance the ATP output of photosynthesis with protection of the apparatus. A well-studied mechanism is thiol modulation; a light/dark regulation through reversible cleavage of a disulfide in the CF1Fo γ-subunit. The disulfide hampers ATP synthesis and hydrolysis reactions in dark-adapted CF1Fo from land plants by increasing the required transmembrane electrochemical proton gradient ([Formula: see text]). Here, we show in Chlamydomonas reinhardtii that algal CF1Fo is differently regulated in vivo. A specific hairpin structure in the γ-subunit redox domain disconnects activity regulation from disulfide formation in the dark. Electrochromic shift measurements suggested that the hairpin kept wild-type CF1Fo active, whereas the enzyme was switched off in algal mutant cells expressing a plant-like hairpin structure. The hairpin segment swap resulted in an elevated [Formula: see text] threshold to activate plant-like CF1Fo, increased by ~1.4 photosystem (PS) I charge separations. The resulting dark-equilibrated [Formula: see text] dropped in the mutants by ~2.7 PSI charge separation equivalents. Photobioreactor experiments showed no phenotypes in autotrophic aerated mutant cultures. In contrast, chlorophyll fluorescence measurements under heterotrophic dark conditions point to an altered dark metabolism in cells with the plant-like CF1Fo as the result of bioenergetic deviations from wild-type. Our results suggest that the lifestyle of C. reinhardtii requires a specific CF1Fo dark regulation that partakes in metabolic coupling between the chloroplast and acetate-fueled mitochondria.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.