阿尔及利亚东部出现产生 OXA 48 碳青霉烯酶的海德堡肠炎沙门氏菌。

IF 2.3 4区 医学 Q3 INFECTIOUS DISEASES Microbial drug resistance Pub Date : 2024-11-06 DOI:10.1089/mdr.2023.0287
Selma Bouheraoua, Abdesselam Lezzar, Farida Assaous, Chafia Bentchouala, Sadjia Mahrane, Kaddour Benlabed, Hassiba Tali Maamar
{"title":"阿尔及利亚东部出现产生 OXA 48 碳青霉烯酶的海德堡肠炎沙门氏菌。","authors":"Selma Bouheraoua, Abdesselam Lezzar, Farida Assaous, Chafia Bentchouala, Sadjia Mahrane, Kaddour Benlabed, Hassiba Tali Maamar","doi":"10.1089/mdr.2023.0287","DOIUrl":null,"url":null,"abstract":"<p><p><i>Salmonella</i> infections have become increasingly resistant to antibiotics, including fluoroquinolones, third-generation cephalosporins (C3G), and even carbapenems. This report describes the emergence of a strain of <i>Salmonella enterica</i> serovar Heidelberg that produces the carbapenemase OXA 48. The strain was isolated from a stool sample taken from a newborn. Antimicrobial susceptibility testing was carried out following the recommendations of the Clinical and Laboratory Standard Institute. Whole genome sequencing was performed on MiSeq Illumina™. The strain was resistant to ertapenem (minimal inhibitory concentration [MIC] = 12 µg/mL), intermediate to imipenem (MIC = 1.5 µg/mL), resistant to nalidixic acid, and intermediate to fluoroquinolones but was susceptible to C3G, cotrimoxazole, chloramphenicol, and colistin (MIC = 0.064 µg/mL). The strain was identified as ST-15. The strain of <i>Salmonella</i> Heidelberg ST-15 was found to have antimicrobial resistance genes, specifically <i>blaOXA-48</i>, aac(6')-Iaa and <i>fosA7</i>, which mediate resistance to carbapenems, aminoglycosides and fosfomycin, respectively. Additionally, mutations were detected in the <i>gyrA</i>, <i>parC.</i> Three plasmid replicon type IncL, IncX1, and Col156 have been identified. The strain has the potential to cause an epidemic. The genomic analysis of the strain allowed us to understand the mechanisms of resistance. Preventing the spread of <i>Salmonella</i> carbapenemase-producing strains is crucial, particularly in hospital settings. Epidemiological measures are necessary to achieve this goal.</p>","PeriodicalId":18701,"journal":{"name":"Microbial drug resistance","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emergence of <i>Salmonella enterica</i> Serovar Heidelberg Producing OXA 48 Carbapenemase in Eastern Algeria.\",\"authors\":\"Selma Bouheraoua, Abdesselam Lezzar, Farida Assaous, Chafia Bentchouala, Sadjia Mahrane, Kaddour Benlabed, Hassiba Tali Maamar\",\"doi\":\"10.1089/mdr.2023.0287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Salmonella</i> infections have become increasingly resistant to antibiotics, including fluoroquinolones, third-generation cephalosporins (C3G), and even carbapenems. This report describes the emergence of a strain of <i>Salmonella enterica</i> serovar Heidelberg that produces the carbapenemase OXA 48. The strain was isolated from a stool sample taken from a newborn. Antimicrobial susceptibility testing was carried out following the recommendations of the Clinical and Laboratory Standard Institute. Whole genome sequencing was performed on MiSeq Illumina™. The strain was resistant to ertapenem (minimal inhibitory concentration [MIC] = 12 µg/mL), intermediate to imipenem (MIC = 1.5 µg/mL), resistant to nalidixic acid, and intermediate to fluoroquinolones but was susceptible to C3G, cotrimoxazole, chloramphenicol, and colistin (MIC = 0.064 µg/mL). The strain was identified as ST-15. The strain of <i>Salmonella</i> Heidelberg ST-15 was found to have antimicrobial resistance genes, specifically <i>blaOXA-48</i>, aac(6')-Iaa and <i>fosA7</i>, which mediate resistance to carbapenems, aminoglycosides and fosfomycin, respectively. Additionally, mutations were detected in the <i>gyrA</i>, <i>parC.</i> Three plasmid replicon type IncL, IncX1, and Col156 have been identified. The strain has the potential to cause an epidemic. The genomic analysis of the strain allowed us to understand the mechanisms of resistance. Preventing the spread of <i>Salmonella</i> carbapenemase-producing strains is crucial, particularly in hospital settings. Epidemiological measures are necessary to achieve this goal.</p>\",\"PeriodicalId\":18701,\"journal\":{\"name\":\"Microbial drug resistance\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial drug resistance\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/mdr.2023.0287\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial drug resistance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/mdr.2023.0287","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

摘要

沙门氏菌感染对抗生素(包括氟喹诺酮类、第三代头孢菌素(C3G),甚至碳青霉烯类)的耐药性越来越强。本报告描述了一种能产生碳青霉烯酶 OXA 48 的海德堡肠炎沙门氏菌菌株的出现。该菌株是从一名新生儿的粪便样本中分离出来的。按照临床和实验室标准研究所的建议进行了抗菌药敏感性检测。用 MiSeq Illumina™ 进行了全基因组测序。该菌株对厄他培南耐药(最小抑菌浓度 [MIC] = 12 µg/mL),对亚胺培南耐药(MIC = 1.5 µg/mL),对纳利昔酸耐药,对氟喹诺酮类耐药,但对 C3G、复方新诺明、氯霉素和可乐定(MIC = 0.064 µg/mL)敏感。该菌株被鉴定为 ST-15。发现海德堡沙门氏菌 ST-15 菌株具有抗菌药耐药性基因,特别是 blaOXA-48、aac(6')-Iaa 和 fosA7,它们分别介导对碳青霉烯类、氨基糖苷类和磷霉素的耐药性。此外,gyrA、parC.已鉴定出三种质粒复制子类型 IncL、IncX1 和 Col156。该菌株有可能引发流行病。通过对该菌株的基因组分析,我们了解了其产生抗药性的机制。防止产碳青霉烯酶沙门氏菌菌株的传播至关重要,尤其是在医院环境中。要实现这一目标,必须采取流行病学措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Emergence of Salmonella enterica Serovar Heidelberg Producing OXA 48 Carbapenemase in Eastern Algeria.

Salmonella infections have become increasingly resistant to antibiotics, including fluoroquinolones, third-generation cephalosporins (C3G), and even carbapenems. This report describes the emergence of a strain of Salmonella enterica serovar Heidelberg that produces the carbapenemase OXA 48. The strain was isolated from a stool sample taken from a newborn. Antimicrobial susceptibility testing was carried out following the recommendations of the Clinical and Laboratory Standard Institute. Whole genome sequencing was performed on MiSeq Illumina™. The strain was resistant to ertapenem (minimal inhibitory concentration [MIC] = 12 µg/mL), intermediate to imipenem (MIC = 1.5 µg/mL), resistant to nalidixic acid, and intermediate to fluoroquinolones but was susceptible to C3G, cotrimoxazole, chloramphenicol, and colistin (MIC = 0.064 µg/mL). The strain was identified as ST-15. The strain of Salmonella Heidelberg ST-15 was found to have antimicrobial resistance genes, specifically blaOXA-48, aac(6')-Iaa and fosA7, which mediate resistance to carbapenems, aminoglycosides and fosfomycin, respectively. Additionally, mutations were detected in the gyrA, parC. Three plasmid replicon type IncL, IncX1, and Col156 have been identified. The strain has the potential to cause an epidemic. The genomic analysis of the strain allowed us to understand the mechanisms of resistance. Preventing the spread of Salmonella carbapenemase-producing strains is crucial, particularly in hospital settings. Epidemiological measures are necessary to achieve this goal.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbial drug resistance
Microbial drug resistance 医学-传染病学
CiteScore
6.00
自引率
3.80%
发文量
118
审稿时长
6-12 weeks
期刊介绍: Microbial Drug Resistance (MDR) is an international, peer-reviewed journal that covers the global spread and threat of multi-drug resistant clones of major pathogens that are widely documented in hospitals and the scientific community. The Journal addresses the serious challenges of trying to decipher the molecular mechanisms of drug resistance. MDR provides a multidisciplinary forum for peer-reviewed original publications as well as topical reviews and special reports. MDR coverage includes: Molecular biology of resistance mechanisms Virulence genes and disease Molecular epidemiology Drug design Infection control.
期刊最新文献
In-Vitro Activity of Dimercaptosuccinic Acid in Combination with Carbapenems Against Carbapenem-Resistant Pseudomonas aeruginosa. A Selective Culture Medium for Screening Aztreonam-Avibactam Resistance in Enterobacterales and Pseudomonas aeruginosa. Deciphering the Resistome and Mobiolme of an Avian-Associated Enterococus faecalis ST249 Clone that Acquired Vancomycin Resistance Isolated from Neutropenic Patient in Tunisia. Spreading Ability of Tet(X)-Harboring Plasmid and Effect of Tetracyclines as a Selective Pressure. Emergence of Salmonella enterica Serovar Heidelberg Producing OXA 48 Carbapenemase in Eastern Algeria.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1