利用多组学方法确定生牛奶中精神营养菌和热尿菌的特征。

IF 4 2区 生物学 Q1 GENETICS & HEREDITY Microbial Genomics Pub Date : 2024-11-01 DOI:10.1099/mgen.0.001311
Xue Qin, Jingqi Cheng, Yue Qiu, Ning Guan, Tanushree B Gupta, Shuyan Wu, Yujun Jiang, Xinyan Yang, Chaoxin Man
{"title":"利用多组学方法确定生牛奶中精神营养菌和热尿菌的特征。","authors":"Xue Qin, Jingqi Cheng, Yue Qiu, Ning Guan, Tanushree B Gupta, Shuyan Wu, Yujun Jiang, Xinyan Yang, Chaoxin Man","doi":"10.1099/mgen.0.001311","DOIUrl":null,"url":null,"abstract":"<p><p>Psychrotrophic and thermoduric bacteria are the main reasons for the spoilage of dairy products. This study aims to address the composition and function of psychrotrophic and thermoduric bacteria in eight groups of raw milk samples obtained from Heilongjiang Province and Inner Mongolia (China). Microbial enumeration showed an average total bacterial count of 4.63 log c.f.u. ml<sup>-1</sup> and psychrotrophic bacterial counts of 4.82 log c.f.u. ml<sup>-1</sup>. The mean counts of mesophilic and thermophilic thermoduric bacteria were 3.68 log and 1.81 log c.f.u. ml<sup>-1</sup>, respectively. Isolated psychrotrophic bacteria (26 genera and 50 species) and mesophilic thermoduric bacteria (20 genera and 32 species) showed high microbial diversity. Through metagenomic and proteomic analyses, significant disparities in the concentration and community structure of psychrotrophic and thermoduric bacteria were observed among different locations. A large number of peptidases were annotated by metagenomics, which may result in milk spoilage. They mainly come from some typical psychrotrophic and thermoduric bacteria, such as <i>Chryseobacterium</i>, <i>Epilithonimonas</i>, <i>Pseudomonas</i>, <i>Psychrobacter</i>, <i>Acinetobacter, Lactococcus, Escherichia</i> and <i>Bacillus</i>. However, the main proteins detected in fresh raw milk were associated with bacterial growth, reproduction and adaptation to cold environments. This investigation provides valuable insights into the microbial communities and protein profiles of raw milk, shedding light on the microbial factors contributing to milk deterioration.</p>","PeriodicalId":18487,"journal":{"name":"Microbial Genomics","volume":"10 11","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540130/pdf/","citationCount":"0","resultStr":"{\"title\":\"Characterization of psychrotrophic and thermoduric bacteria in raw milk using a multi-omics approach.\",\"authors\":\"Xue Qin, Jingqi Cheng, Yue Qiu, Ning Guan, Tanushree B Gupta, Shuyan Wu, Yujun Jiang, Xinyan Yang, Chaoxin Man\",\"doi\":\"10.1099/mgen.0.001311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Psychrotrophic and thermoduric bacteria are the main reasons for the spoilage of dairy products. This study aims to address the composition and function of psychrotrophic and thermoduric bacteria in eight groups of raw milk samples obtained from Heilongjiang Province and Inner Mongolia (China). Microbial enumeration showed an average total bacterial count of 4.63 log c.f.u. ml<sup>-1</sup> and psychrotrophic bacterial counts of 4.82 log c.f.u. ml<sup>-1</sup>. The mean counts of mesophilic and thermophilic thermoduric bacteria were 3.68 log and 1.81 log c.f.u. ml<sup>-1</sup>, respectively. Isolated psychrotrophic bacteria (26 genera and 50 species) and mesophilic thermoduric bacteria (20 genera and 32 species) showed high microbial diversity. Through metagenomic and proteomic analyses, significant disparities in the concentration and community structure of psychrotrophic and thermoduric bacteria were observed among different locations. A large number of peptidases were annotated by metagenomics, which may result in milk spoilage. They mainly come from some typical psychrotrophic and thermoduric bacteria, such as <i>Chryseobacterium</i>, <i>Epilithonimonas</i>, <i>Pseudomonas</i>, <i>Psychrobacter</i>, <i>Acinetobacter, Lactococcus, Escherichia</i> and <i>Bacillus</i>. However, the main proteins detected in fresh raw milk were associated with bacterial growth, reproduction and adaptation to cold environments. This investigation provides valuable insights into the microbial communities and protein profiles of raw milk, shedding light on the microbial factors contributing to milk deterioration.</p>\",\"PeriodicalId\":18487,\"journal\":{\"name\":\"Microbial Genomics\",\"volume\":\"10 11\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540130/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1099/mgen.0.001311\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1099/mgen.0.001311","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

精神营养菌和热变质菌是乳制品变质的主要原因。本研究旨在探讨从中国黑龙江省和内蒙古获得的八组生乳样品中精神营养菌和热腐败菌的组成和功能。微生物计数显示,平均细菌总数为 4.63 log c.f.u. ml-1,精神营养细菌计数为 4.82 log c.f.u. ml-1。中嗜热细菌和嗜热热杜氏细菌的平均计数分别为 3.68 log c.f.u. ml-1 和 1.81 log c.f.u.ml-1。分离出的精神营养细菌(26 属 50 种)和中嗜热细菌(20 属 32 种)显示出微生物的高度多样性。通过元基因组和蛋白质组分析,观察到不同地点的心理营养细菌和热尿细菌的浓度和群落结构存在显著差异。元基因组学注释了大量可能导致牛奶腐败的肽酶。这些肽酶主要来自一些典型的精神营养性细菌和热杜氏菌,如奇异单胞菌、表石单胞菌、假单胞菌、精神杆菌、醋杆菌、乳球菌、埃希氏菌和芽孢杆菌。不过,在新鲜生奶中检测到的主要蛋白质与细菌的生长、繁殖和对寒冷环境的适应有关。这项调查为了解生鲜乳中的微生物群落和蛋白质特征提供了宝贵的信息,并揭示了导致牛奶变质的微生物因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterization of psychrotrophic and thermoduric bacteria in raw milk using a multi-omics approach.

Psychrotrophic and thermoduric bacteria are the main reasons for the spoilage of dairy products. This study aims to address the composition and function of psychrotrophic and thermoduric bacteria in eight groups of raw milk samples obtained from Heilongjiang Province and Inner Mongolia (China). Microbial enumeration showed an average total bacterial count of 4.63 log c.f.u. ml-1 and psychrotrophic bacterial counts of 4.82 log c.f.u. ml-1. The mean counts of mesophilic and thermophilic thermoduric bacteria were 3.68 log and 1.81 log c.f.u. ml-1, respectively. Isolated psychrotrophic bacteria (26 genera and 50 species) and mesophilic thermoduric bacteria (20 genera and 32 species) showed high microbial diversity. Through metagenomic and proteomic analyses, significant disparities in the concentration and community structure of psychrotrophic and thermoduric bacteria were observed among different locations. A large number of peptidases were annotated by metagenomics, which may result in milk spoilage. They mainly come from some typical psychrotrophic and thermoduric bacteria, such as Chryseobacterium, Epilithonimonas, Pseudomonas, Psychrobacter, Acinetobacter, Lactococcus, Escherichia and Bacillus. However, the main proteins detected in fresh raw milk were associated with bacterial growth, reproduction and adaptation to cold environments. This investigation provides valuable insights into the microbial communities and protein profiles of raw milk, shedding light on the microbial factors contributing to milk deterioration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbial Genomics
Microbial Genomics Medicine-Epidemiology
CiteScore
6.60
自引率
2.60%
发文量
153
审稿时长
12 weeks
期刊介绍: Microbial Genomics (MGen) is a fully open access, mandatory open data and peer-reviewed journal publishing high-profile original research on archaea, bacteria, microbial eukaryotes and viruses.
期刊最新文献
Longitudinal genomic surveillance of a UK intensive care unit shows a lack of patient colonisation by multi-drug-resistant Gram-negative bacterial pathogens. Characterization of psychrotrophic and thermoduric bacteria in raw milk using a multi-omics approach. Chromosome architecture as a determinant for biosynthetic diversity in Micromonospora. Genomic diversity of Campylobacter jejuni and Campylobacter coli isolates recovered from human and poultry in Australia and New Zealand, 2017 to 2019. Identifying gene-level mechanisms of successful dispersal of Vibrio parahaemolyticus during El Niño events.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1