Garrett M Knotts, Spencer K Lile, Emily M Campbell, Taylor A Agee, Senal D Liyanage, Steven R Gwaltney, Christopher N Johnson
{"title":"脂质双分子层中人体心脏钠通道的全原子模型。","authors":"Garrett M Knotts, Spencer K Lile, Emily M Campbell, Taylor A Agee, Senal D Liyanage, Steven R Gwaltney, Christopher N Johnson","doi":"10.1038/s41598-024-78466-4","DOIUrl":null,"url":null,"abstract":"<p><p>Voltage-gated sodium channels (Na<sub>V</sub>) are complex macromolecular proteins that are responsible for the initial upstroke of an action potential in excitable cells. Appropriate function is necessary for many physiological processes such as heartbeat, voluntary muscle contraction, nerve conduction, and neurological function. Dysfunction can have life-threatening consequences. During the past decade, there have been significant advancements with ion channel structural characterization by CryoEM, yet descriptions of cytosolic components are often lacking. Many investigations have biophysically characterized reconstituted cytosolic components and their interactions. However, extrapolating the structural alterations and allosteric communication within an intact ion channel can be challenging. To address this, we have developed an all-atom model of the human cardiac sodium channel (Na<sub>V</sub>1.5) in a lipid bilayer with explicit salt and water. Our simulations contain descriptions of cytosolic components that are poorly predicted by AlphaFold and lacking in many CryoEM structures. Leveraging the latest advancements of the Amber force fields (ff19sb and Lipid21) and water model (OPC), our simulations improved protein backbone torsion angles and generated structural information across time (four independent one-microsecond simulations). Our analysis provided descriptions of lipid and solvent contacts and insight into the C-Terminal Domain - inactivation gate and inactivation gate - latch receptor interactions.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538489/pdf/","citationCount":"0","resultStr":"{\"title\":\"An all-atom model of the human cardiac sodium channel in a lipid bilayer.\",\"authors\":\"Garrett M Knotts, Spencer K Lile, Emily M Campbell, Taylor A Agee, Senal D Liyanage, Steven R Gwaltney, Christopher N Johnson\",\"doi\":\"10.1038/s41598-024-78466-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Voltage-gated sodium channels (Na<sub>V</sub>) are complex macromolecular proteins that are responsible for the initial upstroke of an action potential in excitable cells. Appropriate function is necessary for many physiological processes such as heartbeat, voluntary muscle contraction, nerve conduction, and neurological function. Dysfunction can have life-threatening consequences. During the past decade, there have been significant advancements with ion channel structural characterization by CryoEM, yet descriptions of cytosolic components are often lacking. Many investigations have biophysically characterized reconstituted cytosolic components and their interactions. However, extrapolating the structural alterations and allosteric communication within an intact ion channel can be challenging. To address this, we have developed an all-atom model of the human cardiac sodium channel (Na<sub>V</sub>1.5) in a lipid bilayer with explicit salt and water. Our simulations contain descriptions of cytosolic components that are poorly predicted by AlphaFold and lacking in many CryoEM structures. Leveraging the latest advancements of the Amber force fields (ff19sb and Lipid21) and water model (OPC), our simulations improved protein backbone torsion angles and generated structural information across time (four independent one-microsecond simulations). Our analysis provided descriptions of lipid and solvent contacts and insight into the C-Terminal Domain - inactivation gate and inactivation gate - latch receptor interactions.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538489/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-78466-4\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-78466-4","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
An all-atom model of the human cardiac sodium channel in a lipid bilayer.
Voltage-gated sodium channels (NaV) are complex macromolecular proteins that are responsible for the initial upstroke of an action potential in excitable cells. Appropriate function is necessary for many physiological processes such as heartbeat, voluntary muscle contraction, nerve conduction, and neurological function. Dysfunction can have life-threatening consequences. During the past decade, there have been significant advancements with ion channel structural characterization by CryoEM, yet descriptions of cytosolic components are often lacking. Many investigations have biophysically characterized reconstituted cytosolic components and their interactions. However, extrapolating the structural alterations and allosteric communication within an intact ion channel can be challenging. To address this, we have developed an all-atom model of the human cardiac sodium channel (NaV1.5) in a lipid bilayer with explicit salt and water. Our simulations contain descriptions of cytosolic components that are poorly predicted by AlphaFold and lacking in many CryoEM structures. Leveraging the latest advancements of the Amber force fields (ff19sb and Lipid21) and water model (OPC), our simulations improved protein backbone torsion angles and generated structural information across time (four independent one-microsecond simulations). Our analysis provided descriptions of lipid and solvent contacts and insight into the C-Terminal Domain - inactivation gate and inactivation gate - latch receptor interactions.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.