{"title":"基于 CT 的深度学习模型,用于预测体外冲击波碎石术治疗大于 1 厘米输尿管结石的成功率。","authors":"Rijin Song, Bo Liu, Huixin Xu","doi":"10.1007/s00240-024-01656-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To develop a deep learning (DL) model based on computed tomography (CT) images to predict the success of extracorporeal shock wave lithotripsy (SWL) treatment for patients with ureteral stones larger than 1 cm.</p><p><strong>Materials and methods: </strong>We enrolled 333 patients who underwent SWL treatment for ureteral stones and randomly divided them into training and test sets. A DL model was built based on CT images of ureteral stones to predict SWL outcomes. The predictive efficacy of the DL model was assessed by comparing it with traditional and radiomics models.</p><p><strong>Results: </strong>The DL model demonstrated significantly better predictive performance in both training and test sets compared to radiomics (training set, AUC: 0.993 vs. 0.923, P < 0.001; test set AUC: 0.982 vs. 0.846, P < 0.001) and traditional models (training set AUC: 0.993 vs. 0.75, P = 0.005; test set AUC: 0.982 vs. 0.677, P < 0.001). Decision curve analysis (DCA) also proved that the DL model brought more benefit in predicting the success of SWL treatment than other methods.</p><p><strong>Conclusion: </strong>The DL model based on CT images showed excellent ability to predict the probability of success of SWL treatment for patients with ureteral stones larger than 1 cm, providing a new auxiliary tool for clinical treatment decision-making.</p>","PeriodicalId":23411,"journal":{"name":"Urolithiasis","volume":"52 1","pages":"157"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CT-based deep learning model for predicting the success of extracorporeal shock wave lithotripsy in treating ureteral stones larger than 1 cm.\",\"authors\":\"Rijin Song, Bo Liu, Huixin Xu\",\"doi\":\"10.1007/s00240-024-01656-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>To develop a deep learning (DL) model based on computed tomography (CT) images to predict the success of extracorporeal shock wave lithotripsy (SWL) treatment for patients with ureteral stones larger than 1 cm.</p><p><strong>Materials and methods: </strong>We enrolled 333 patients who underwent SWL treatment for ureteral stones and randomly divided them into training and test sets. A DL model was built based on CT images of ureteral stones to predict SWL outcomes. The predictive efficacy of the DL model was assessed by comparing it with traditional and radiomics models.</p><p><strong>Results: </strong>The DL model demonstrated significantly better predictive performance in both training and test sets compared to radiomics (training set, AUC: 0.993 vs. 0.923, P < 0.001; test set AUC: 0.982 vs. 0.846, P < 0.001) and traditional models (training set AUC: 0.993 vs. 0.75, P = 0.005; test set AUC: 0.982 vs. 0.677, P < 0.001). Decision curve analysis (DCA) also proved that the DL model brought more benefit in predicting the success of SWL treatment than other methods.</p><p><strong>Conclusion: </strong>The DL model based on CT images showed excellent ability to predict the probability of success of SWL treatment for patients with ureteral stones larger than 1 cm, providing a new auxiliary tool for clinical treatment decision-making.</p>\",\"PeriodicalId\":23411,\"journal\":{\"name\":\"Urolithiasis\",\"volume\":\"52 1\",\"pages\":\"157\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Urolithiasis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00240-024-01656-2\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"UROLOGY & NEPHROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urolithiasis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00240-024-01656-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
CT-based deep learning model for predicting the success of extracorporeal shock wave lithotripsy in treating ureteral stones larger than 1 cm.
Objectives: To develop a deep learning (DL) model based on computed tomography (CT) images to predict the success of extracorporeal shock wave lithotripsy (SWL) treatment for patients with ureteral stones larger than 1 cm.
Materials and methods: We enrolled 333 patients who underwent SWL treatment for ureteral stones and randomly divided them into training and test sets. A DL model was built based on CT images of ureteral stones to predict SWL outcomes. The predictive efficacy of the DL model was assessed by comparing it with traditional and radiomics models.
Results: The DL model demonstrated significantly better predictive performance in both training and test sets compared to radiomics (training set, AUC: 0.993 vs. 0.923, P < 0.001; test set AUC: 0.982 vs. 0.846, P < 0.001) and traditional models (training set AUC: 0.993 vs. 0.75, P = 0.005; test set AUC: 0.982 vs. 0.677, P < 0.001). Decision curve analysis (DCA) also proved that the DL model brought more benefit in predicting the success of SWL treatment than other methods.
Conclusion: The DL model based on CT images showed excellent ability to predict the probability of success of SWL treatment for patients with ureteral stones larger than 1 cm, providing a new auxiliary tool for clinical treatment decision-making.
期刊介绍:
Official Journal of the International Urolithiasis Society
The journal aims to publish original articles in the fields of clinical and experimental investigation only within the sphere of urolithiasis and its related areas of research. The journal covers all aspects of urolithiasis research including the diagnosis, epidemiology, pathogenesis, genetics, clinical biochemistry, open and non-invasive surgical intervention, nephrological investigation, chemistry and prophylaxis of the disorder. The Editor welcomes contributions on topics of interest to urologists, nephrologists, radiologists, clinical biochemists, epidemiologists, nutritionists, basic scientists and nurses working in that field.
Contributions may be submitted as full-length articles or as rapid communications in the form of Letters to the Editor. Articles should be original and should contain important new findings from carefully conducted studies designed to produce statistically significant data. Please note that we no longer publish articles classified as Case Reports. Editorials and review articles may be published by invitation from the Editorial Board. All submissions are peer-reviewed. Through an electronic system for the submission and review of manuscripts, the Editor and Associate Editors aim to make publication accessible as quickly as possible to a large number of readers throughout the world.