结合边缘增强和冷扩散模型进行低剂量 CT 图像去噪。

Yinglin Du, Yi Liu, Han Wu, Jiaqi Kang, Zhiguo Gui, Pengcheng Zhang, Yali Ren
{"title":"结合边缘增强和冷扩散模型进行低剂量 CT 图像去噪。","authors":"Yinglin Du, Yi Liu, Han Wu, Jiaqi Kang, Zhiguo Gui, Pengcheng Zhang, Yali Ren","doi":"10.1515/bmt-2024-0362","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Since the quality of low dose CT (LDCT) images is often severely affected by noise and artifacts, it is very important to maintain high quality CT images while effectively reducing the radiation dose.</p><p><strong>Methods: </strong>In recent years, the representation of diffusion models to produce high quality images and stable trainability has attracted wide attention. With the extension of the cold diffusion model to the classical diffusion model, its application has greater flexibility. Inspired by the cold diffusion model, we proposes a low dose CT image denoising method, called CECDM, based on the combination of edge enhancement and cold diffusion model. The LDCT image is taken as the end point (forward) of the diffusion process and the starting point (reverse) of the sampling process. Improved sobel operator and Convolution Block Attention Module are added to the network, and compound loss function is adopted.</p><p><strong>Results: </strong>The experimental results show that CECDM can effectively remove noise and artifacts from LDCT images while the inference time of a single image is reduced to 0.41 s.</p><p><strong>Conclusions: </strong>Compared with the existing LDCT image post-processing methods, CECDM has a significant improvement in all indexes.</p>","PeriodicalId":93905,"journal":{"name":"Biomedizinische Technik. Biomedical engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combination of edge enhancement and cold diffusion model for low dose CT image denoising.\",\"authors\":\"Yinglin Du, Yi Liu, Han Wu, Jiaqi Kang, Zhiguo Gui, Pengcheng Zhang, Yali Ren\",\"doi\":\"10.1515/bmt-2024-0362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Since the quality of low dose CT (LDCT) images is often severely affected by noise and artifacts, it is very important to maintain high quality CT images while effectively reducing the radiation dose.</p><p><strong>Methods: </strong>In recent years, the representation of diffusion models to produce high quality images and stable trainability has attracted wide attention. With the extension of the cold diffusion model to the classical diffusion model, its application has greater flexibility. Inspired by the cold diffusion model, we proposes a low dose CT image denoising method, called CECDM, based on the combination of edge enhancement and cold diffusion model. The LDCT image is taken as the end point (forward) of the diffusion process and the starting point (reverse) of the sampling process. Improved sobel operator and Convolution Block Attention Module are added to the network, and compound loss function is adopted.</p><p><strong>Results: </strong>The experimental results show that CECDM can effectively remove noise and artifacts from LDCT images while the inference time of a single image is reduced to 0.41 s.</p><p><strong>Conclusions: </strong>Compared with the existing LDCT image post-processing methods, CECDM has a significant improvement in all indexes.</p>\",\"PeriodicalId\":93905,\"journal\":{\"name\":\"Biomedizinische Technik. Biomedical engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedizinische Technik. Biomedical engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/bmt-2024-0362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedizinische Technik. Biomedical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bmt-2024-0362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:由于低剂量 CT(LDCT)图像的质量经常受到噪声和伪影的严重影响,因此在有效降低辐射剂量的同时保持高质量的 CT 图像非常重要:由于低剂量 CT(LDCT)图像的质量经常受到噪声和伪影的严重影响,因此在有效降低辐射剂量的同时保持高质量的 CT 图像非常重要:近年来,利用弥散模型生成高质量图像和稳定的可训练性受到广泛关注。随着冷扩散模型向经典扩散模型的扩展,其应用具有更大的灵活性。受冷扩散模型的启发,我们提出了一种基于边缘增强和冷扩散模型相结合的低剂量 CT 图像去噪方法,称为 CECDM。将 LDCT 图像作为扩散过程的终点(正向)和采样过程的起点(反向)。网络中加入了改进的苏贝尔算子和卷积块注意模块,并采用了复合损失函数:实验结果表明,CECDM 能有效去除 LDCT 图像中的噪声和伪影,单幅图像的推理时间缩短至 0.41 秒:结论:与现有的 LDCT 图像后处理方法相比,CECDM 在各项指标上都有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combination of edge enhancement and cold diffusion model for low dose CT image denoising.

Objectives: Since the quality of low dose CT (LDCT) images is often severely affected by noise and artifacts, it is very important to maintain high quality CT images while effectively reducing the radiation dose.

Methods: In recent years, the representation of diffusion models to produce high quality images and stable trainability has attracted wide attention. With the extension of the cold diffusion model to the classical diffusion model, its application has greater flexibility. Inspired by the cold diffusion model, we proposes a low dose CT image denoising method, called CECDM, based on the combination of edge enhancement and cold diffusion model. The LDCT image is taken as the end point (forward) of the diffusion process and the starting point (reverse) of the sampling process. Improved sobel operator and Convolution Block Attention Module are added to the network, and compound loss function is adopted.

Results: The experimental results show that CECDM can effectively remove noise and artifacts from LDCT images while the inference time of a single image is reduced to 0.41 s.

Conclusions: Compared with the existing LDCT image post-processing methods, CECDM has a significant improvement in all indexes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recognition analysis of spiral and straight-line drawings in tremor assessment. A type-2 fuzzy inference-based approach enables walking speed estimation that adapts to inter-individual gait patterns. Hydrogel promotes bone regeneration through various mechanisms: a review. Combination of edge enhancement and cold diffusion model for low dose CT image denoising. Prediction of muscular-invasive bladder cancer using multi-view fusion self-distillation model based on 3D T2-Weighted images.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1