Shuang Wang, Xueliang Liu, Dali Wei, Huayuan Zhou, Jiawei Zhu, Qing Yu, Lei Luo, Xinfeng Dai, Yiting Jiang, Lu Yu, Yu Yang* and Weihong Tan*,
{"title":"多价色聚体纳米药物共轭物通过铜超载和谷胱甘肽耗竭实现高效的肿瘤杯突疗法","authors":"Shuang Wang, Xueliang Liu, Dali Wei, Huayuan Zhou, Jiawei Zhu, Qing Yu, Lei Luo, Xinfeng Dai, Yiting Jiang, Lu Yu, Yu Yang* and Weihong Tan*, ","doi":"10.1021/jacs.4c0633810.1021/jacs.4c06338","DOIUrl":null,"url":null,"abstract":"<p >Cuproptosis, a recently identified form of copper-dependent cell death, shows promising tumor suppressive effects with minimal drug resistance. However, its therapeutic efficacy is hampered by its dependence on copper ions and the glutathione (GSH)-rich microenvironment in tumors. Here, we have developed polyvalent aptamer nanodrug conjugates (termed CuPEs@PApt) with a nucleosome-like structure to improve tumor cuproptosis therapy by exploiting mitochondrial copper overload and GSH depletion. Polyvalent aptamer (PApt), comprising polyvalent epithelial cell adhesion molecule aptamers for tumor targeting and repetitive PolyT sequences for copper chelation, facilitates efficient loading and targeted delivery of copper peroxide-Elesclomol nanodots (CuPEs). Upon internalization by tumor cells, Elesclomol released from CuPEs@PApt accumulates copper ions in mitochondria to initiate cuproptosis, while lysosomal degradation of CuP nanodots generates exogenous Cu<sup>2+</sup> and H<sub>2</sub>O<sub>2</sub>, triggering a Fenton-like reaction for GSH depletion to enhance cuproptosis. In vitro and in vivo experiments confirm the efficacy of this strategy in inducing tumor cell cuproptosis and immunogenic cell death, the latter contributing to the activation of the antitumor immune response for synergistic tumor growth inhibition.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"146 44","pages":"30033–30045 30033–30045"},"PeriodicalIF":14.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polyvalent Aptamer Nanodrug Conjugates Enable Efficient Tumor Cuproptosis Therapy Through Copper Overload and Glutathione Depletion\",\"authors\":\"Shuang Wang, Xueliang Liu, Dali Wei, Huayuan Zhou, Jiawei Zhu, Qing Yu, Lei Luo, Xinfeng Dai, Yiting Jiang, Lu Yu, Yu Yang* and Weihong Tan*, \",\"doi\":\"10.1021/jacs.4c0633810.1021/jacs.4c06338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Cuproptosis, a recently identified form of copper-dependent cell death, shows promising tumor suppressive effects with minimal drug resistance. However, its therapeutic efficacy is hampered by its dependence on copper ions and the glutathione (GSH)-rich microenvironment in tumors. Here, we have developed polyvalent aptamer nanodrug conjugates (termed CuPEs@PApt) with a nucleosome-like structure to improve tumor cuproptosis therapy by exploiting mitochondrial copper overload and GSH depletion. Polyvalent aptamer (PApt), comprising polyvalent epithelial cell adhesion molecule aptamers for tumor targeting and repetitive PolyT sequences for copper chelation, facilitates efficient loading and targeted delivery of copper peroxide-Elesclomol nanodots (CuPEs). Upon internalization by tumor cells, Elesclomol released from CuPEs@PApt accumulates copper ions in mitochondria to initiate cuproptosis, while lysosomal degradation of CuP nanodots generates exogenous Cu<sup>2+</sup> and H<sub>2</sub>O<sub>2</sub>, triggering a Fenton-like reaction for GSH depletion to enhance cuproptosis. In vitro and in vivo experiments confirm the efficacy of this strategy in inducing tumor cell cuproptosis and immunogenic cell death, the latter contributing to the activation of the antitumor immune response for synergistic tumor growth inhibition.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"146 44\",\"pages\":\"30033–30045 30033–30045\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.4c06338\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c06338","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Polyvalent Aptamer Nanodrug Conjugates Enable Efficient Tumor Cuproptosis Therapy Through Copper Overload and Glutathione Depletion
Cuproptosis, a recently identified form of copper-dependent cell death, shows promising tumor suppressive effects with minimal drug resistance. However, its therapeutic efficacy is hampered by its dependence on copper ions and the glutathione (GSH)-rich microenvironment in tumors. Here, we have developed polyvalent aptamer nanodrug conjugates (termed CuPEs@PApt) with a nucleosome-like structure to improve tumor cuproptosis therapy by exploiting mitochondrial copper overload and GSH depletion. Polyvalent aptamer (PApt), comprising polyvalent epithelial cell adhesion molecule aptamers for tumor targeting and repetitive PolyT sequences for copper chelation, facilitates efficient loading and targeted delivery of copper peroxide-Elesclomol nanodots (CuPEs). Upon internalization by tumor cells, Elesclomol released from CuPEs@PApt accumulates copper ions in mitochondria to initiate cuproptosis, while lysosomal degradation of CuP nanodots generates exogenous Cu2+ and H2O2, triggering a Fenton-like reaction for GSH depletion to enhance cuproptosis. In vitro and in vivo experiments confirm the efficacy of this strategy in inducing tumor cell cuproptosis and immunogenic cell death, the latter contributing to the activation of the antitumor immune response for synergistic tumor growth inhibition.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.