L. Berger , S. Dolert , T. Akhmetshina , J.-P. Burkhard , M. Tegelkamp , A.M. Rich , W. Rubin , S. Darwiche , G. Kuhn , R.E. Schäublin , B. von Rechenberg , B. Schaller , K.M. Nuss , J.F. Löffler
{"title":"瘦生物可吸收镁钙合金 X0 的体内性能以及与 WE43 的比较:表面改性和合金含量的影响","authors":"L. Berger , S. Dolert , T. Akhmetshina , J.-P. Burkhard , M. Tegelkamp , A.M. Rich , W. Rubin , S. Darwiche , G. Kuhn , R.E. Schäublin , B. von Rechenberg , B. Schaller , K.M. Nuss , J.F. Löffler","doi":"10.1016/j.bioactmat.2024.09.036","DOIUrl":null,"url":null,"abstract":"<div><div>Magnesium alloys present a compelling prospect for absorbable implant materials in orthopedic and trauma surgery. This study evaluates an ultra-high purity, lean magnesium–calcium alloy (X0), both with and without plasma electrolytic oxidation (PEO) surface modification, in comparison to a clinically utilized WE43 magnesium alloy. It is shown that the mechanical properties of X0 can be tuned to yield a high-strength material suitable for bone screws (with an ultimate tensile strength of 336 MPa) or a ductile material appropriate for intraoperatively deformable plates (with an elongation at fracture of 24 %). Four plate-screw combinations were implanted onto the pelvic bones of six sheep without osteotomy for 8 weeks. Subsequent analysis utilized histology, micro-computed tomography, and light and electron microscopy. All implants exhibited signs of degradation and hydrogen-gas evolution, with PEO-coated X0 implants demonstrating the least volume loss and the most substantial new-bone formation on the implant surface and surrounding cancellous bone. Furthermore, the osteoconductive properties of the X0 implants, when uncoated, exceeded those of the uncoated WE43 implants, as evidenced by greater new-bone formation on the surface. This osteoconductivity was amplified with PEO surface modification, which mitigated gas evolution and enhanced osseointegration, encouraging bone apposition in the cancellous bone vicinity. These findings thus indicate that PEO-coated X0 implants hold substantial promise as a biocompatible and absorbable implant material.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"44 ","pages":"Pages 501-515"},"PeriodicalIF":18.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In vivo performance of lean bioabsorbable Mg–Ca alloy X0 and comparison to WE43: Influence of surface modification and alloying content\",\"authors\":\"L. Berger , S. Dolert , T. Akhmetshina , J.-P. Burkhard , M. Tegelkamp , A.M. Rich , W. Rubin , S. Darwiche , G. Kuhn , R.E. Schäublin , B. von Rechenberg , B. Schaller , K.M. Nuss , J.F. Löffler\",\"doi\":\"10.1016/j.bioactmat.2024.09.036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Magnesium alloys present a compelling prospect for absorbable implant materials in orthopedic and trauma surgery. This study evaluates an ultra-high purity, lean magnesium–calcium alloy (X0), both with and without plasma electrolytic oxidation (PEO) surface modification, in comparison to a clinically utilized WE43 magnesium alloy. It is shown that the mechanical properties of X0 can be tuned to yield a high-strength material suitable for bone screws (with an ultimate tensile strength of 336 MPa) or a ductile material appropriate for intraoperatively deformable plates (with an elongation at fracture of 24 %). Four plate-screw combinations were implanted onto the pelvic bones of six sheep without osteotomy for 8 weeks. Subsequent analysis utilized histology, micro-computed tomography, and light and electron microscopy. All implants exhibited signs of degradation and hydrogen-gas evolution, with PEO-coated X0 implants demonstrating the least volume loss and the most substantial new-bone formation on the implant surface and surrounding cancellous bone. Furthermore, the osteoconductive properties of the X0 implants, when uncoated, exceeded those of the uncoated WE43 implants, as evidenced by greater new-bone formation on the surface. This osteoconductivity was amplified with PEO surface modification, which mitigated gas evolution and enhanced osseointegration, encouraging bone apposition in the cancellous bone vicinity. These findings thus indicate that PEO-coated X0 implants hold substantial promise as a biocompatible and absorbable implant material.</div></div>\",\"PeriodicalId\":8762,\"journal\":{\"name\":\"Bioactive Materials\",\"volume\":\"44 \",\"pages\":\"Pages 501-515\"},\"PeriodicalIF\":18.0000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioactive Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452199X24004390\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X24004390","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
In vivo performance of lean bioabsorbable Mg–Ca alloy X0 and comparison to WE43: Influence of surface modification and alloying content
Magnesium alloys present a compelling prospect for absorbable implant materials in orthopedic and trauma surgery. This study evaluates an ultra-high purity, lean magnesium–calcium alloy (X0), both with and without plasma electrolytic oxidation (PEO) surface modification, in comparison to a clinically utilized WE43 magnesium alloy. It is shown that the mechanical properties of X0 can be tuned to yield a high-strength material suitable for bone screws (with an ultimate tensile strength of 336 MPa) or a ductile material appropriate for intraoperatively deformable plates (with an elongation at fracture of 24 %). Four plate-screw combinations were implanted onto the pelvic bones of six sheep without osteotomy for 8 weeks. Subsequent analysis utilized histology, micro-computed tomography, and light and electron microscopy. All implants exhibited signs of degradation and hydrogen-gas evolution, with PEO-coated X0 implants demonstrating the least volume loss and the most substantial new-bone formation on the implant surface and surrounding cancellous bone. Furthermore, the osteoconductive properties of the X0 implants, when uncoated, exceeded those of the uncoated WE43 implants, as evidenced by greater new-bone formation on the surface. This osteoconductivity was amplified with PEO surface modification, which mitigated gas evolution and enhanced osseointegration, encouraging bone apposition in the cancellous bone vicinity. These findings thus indicate that PEO-coated X0 implants hold substantial promise as a biocompatible and absorbable implant material.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.