İ. Keskin , S. Karabulut , A.A. Kaplan , M. Alagöz , M. Akdeniz , K.K. Tüfekci , D.L. Davis , S. Kaplan
{"title":"关于 900 MHz 辐射对人类精子影响的初步研究:体外分子方法","authors":"İ. Keskin , S. Karabulut , A.A. Kaplan , M. Alagöz , M. Akdeniz , K.K. Tüfekci , D.L. Davis , S. Kaplan","doi":"10.1016/j.reprotox.2024.108744","DOIUrl":null,"url":null,"abstract":"<div><div>The use of technologies that produce and emit electromagnetic fields (EMF) is growing exponentially worldwide. The biological effects of EMF-emitting equipment, such as mobile phones and other wireless devices, have been studied in the last decade using <em>in vitro</em> and <em>in vivo</em> methods. Infertility is a growing health problem, and nearly half of cases are because of male-factor. This study investigated the direct <em>in vitro</em> effects of 900 MHz radiation exposure on sperm parameters, genetic status, apoptotic markers, and the PI3K/AKT signaling pathway in healthy normozoospermic men. Semen samples were divided into four groups, two control (30 min and 1 h) and two EMF exposure (30 min and 1 h). Sperm parameters (motility, progressive motility, acrosomal index, morphology), genetic status (DNA fragmentation and chromatin integrity), apoptotic markers (cytokine-c and caspase-3 expression) and the PI3K/AKT signaling pathway (phosphoinoitide 3-kinase-PI3K- and phosphorylated AKT- p-AKT-) were analysed. Sperm motility were significantly reduced in 30 min EMF exposure while a significant increase in the expression of p-AKT were observed in 1 h EMF exposure group. An increased vacuolisation, acrosomal defect, extension of subacrosomal space, uncondensed chromatin structure, apoptotic signs and disrupted axoneme were observed in both EMF groups which were not observed in the control group. Other sperm parameters (morphology and acrosomal index), genetic status, apoptotic markers and the PI3K expression rates had no significant change.</div></div>","PeriodicalId":21137,"journal":{"name":"Reproductive toxicology","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preliminary study on the impact of 900 MHz radiation on human sperm: An in vitro molecular approach\",\"authors\":\"İ. Keskin , S. Karabulut , A.A. Kaplan , M. Alagöz , M. Akdeniz , K.K. Tüfekci , D.L. Davis , S. Kaplan\",\"doi\":\"10.1016/j.reprotox.2024.108744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The use of technologies that produce and emit electromagnetic fields (EMF) is growing exponentially worldwide. The biological effects of EMF-emitting equipment, such as mobile phones and other wireless devices, have been studied in the last decade using <em>in vitro</em> and <em>in vivo</em> methods. Infertility is a growing health problem, and nearly half of cases are because of male-factor. This study investigated the direct <em>in vitro</em> effects of 900 MHz radiation exposure on sperm parameters, genetic status, apoptotic markers, and the PI3K/AKT signaling pathway in healthy normozoospermic men. Semen samples were divided into four groups, two control (30 min and 1 h) and two EMF exposure (30 min and 1 h). Sperm parameters (motility, progressive motility, acrosomal index, morphology), genetic status (DNA fragmentation and chromatin integrity), apoptotic markers (cytokine-c and caspase-3 expression) and the PI3K/AKT signaling pathway (phosphoinoitide 3-kinase-PI3K- and phosphorylated AKT- p-AKT-) were analysed. Sperm motility were significantly reduced in 30 min EMF exposure while a significant increase in the expression of p-AKT were observed in 1 h EMF exposure group. An increased vacuolisation, acrosomal defect, extension of subacrosomal space, uncondensed chromatin structure, apoptotic signs and disrupted axoneme were observed in both EMF groups which were not observed in the control group. Other sperm parameters (morphology and acrosomal index), genetic status, apoptotic markers and the PI3K expression rates had no significant change.</div></div>\",\"PeriodicalId\":21137,\"journal\":{\"name\":\"Reproductive toxicology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reproductive toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0890623824002119\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"REPRODUCTIVE BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproductive toxicology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890623824002119","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
Preliminary study on the impact of 900 MHz radiation on human sperm: An in vitro molecular approach
The use of technologies that produce and emit electromagnetic fields (EMF) is growing exponentially worldwide. The biological effects of EMF-emitting equipment, such as mobile phones and other wireless devices, have been studied in the last decade using in vitro and in vivo methods. Infertility is a growing health problem, and nearly half of cases are because of male-factor. This study investigated the direct in vitro effects of 900 MHz radiation exposure on sperm parameters, genetic status, apoptotic markers, and the PI3K/AKT signaling pathway in healthy normozoospermic men. Semen samples were divided into four groups, two control (30 min and 1 h) and two EMF exposure (30 min and 1 h). Sperm parameters (motility, progressive motility, acrosomal index, morphology), genetic status (DNA fragmentation and chromatin integrity), apoptotic markers (cytokine-c and caspase-3 expression) and the PI3K/AKT signaling pathway (phosphoinoitide 3-kinase-PI3K- and phosphorylated AKT- p-AKT-) were analysed. Sperm motility were significantly reduced in 30 min EMF exposure while a significant increase in the expression of p-AKT were observed in 1 h EMF exposure group. An increased vacuolisation, acrosomal defect, extension of subacrosomal space, uncondensed chromatin structure, apoptotic signs and disrupted axoneme were observed in both EMF groups which were not observed in the control group. Other sperm parameters (morphology and acrosomal index), genetic status, apoptotic markers and the PI3K expression rates had no significant change.
期刊介绍:
Drawing from a large number of disciplines, Reproductive Toxicology publishes timely, original research on the influence of chemical and physical agents on reproduction. Written by and for obstetricians, pediatricians, embryologists, teratologists, geneticists, toxicologists, andrologists, and others interested in detecting potential reproductive hazards, the journal is a forum for communication among researchers and practitioners. Articles focus on the application of in vitro, animal and clinical research to the practice of clinical medicine.
All aspects of reproduction are within the scope of Reproductive Toxicology, including the formation and maturation of male and female gametes, sexual function, the events surrounding the fusion of gametes and the development of the fertilized ovum, nourishment and transport of the conceptus within the genital tract, implantation, embryogenesis, intrauterine growth, placentation and placental function, parturition, lactation and neonatal survival. Adverse reproductive effects in males will be considered as significant as adverse effects occurring in females. To provide a balanced presentation of approaches, equal emphasis will be given to clinical and animal or in vitro work. Typical end points that will be studied by contributors include infertility, sexual dysfunction, spontaneous abortion, malformations, abnormal histogenesis, stillbirth, intrauterine growth retardation, prematurity, behavioral abnormalities, and perinatal mortality.