3DPSR:从单张二维图像细化三维人体网格姿态和形状的创新方法

IF 4.2 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Image and Vision Computing Pub Date : 2024-10-30 DOI:10.1016/j.imavis.2024.105311
Mohit Kushwaha, Jaytrilok Choudhary , Dhirendra Pratap Singh
{"title":"3DPSR:从单张二维图像细化三维人体网格姿态和形状的创新方法","authors":"Mohit Kushwaha,&nbsp;Jaytrilok Choudhary ,&nbsp;Dhirendra Pratap Singh","doi":"10.1016/j.imavis.2024.105311","DOIUrl":null,"url":null,"abstract":"<div><div>In the era of computer vision, 3D human models are gaining a lot of interest in the gaming industry, cloth parsing, avatar creations, and many more applications. In these fields, having a precise 3D human model with accurate shape and pose is crucial for realistic and high-quality results. We proposed an approach called 3DPSR that uses a single 2D image and reconstructs precise 3D human meshes with better alignment of pose and shape. 3DPSR is referred to as <strong>3D P</strong>ose and <strong>S</strong>hape <strong>R</strong>efinements. 3DPSR contains two modules (mesh deformation using pose-fitting and shape-fitting), in which mesh deformation using shape-fitting acts as a refinement module. Compared to existing methods, the proposed method, 3DPSR, delivers more enhanced MPVE and PA-MPJPE results, as well as more accurate 3D models of humans. 3DPSR significantly outperforms state-of-the-art human mesh reconstruction methods on challenging and standard datasets such as SURREAL, Human3.6M, and 3DPW across different scenarios with complex poses, establishing a new benchmark.</div></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"152 ","pages":"Article 105311"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3DPSR: An innovative approach for pose and shape refinement in 3D human meshes from a single 2D image\",\"authors\":\"Mohit Kushwaha,&nbsp;Jaytrilok Choudhary ,&nbsp;Dhirendra Pratap Singh\",\"doi\":\"10.1016/j.imavis.2024.105311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the era of computer vision, 3D human models are gaining a lot of interest in the gaming industry, cloth parsing, avatar creations, and many more applications. In these fields, having a precise 3D human model with accurate shape and pose is crucial for realistic and high-quality results. We proposed an approach called 3DPSR that uses a single 2D image and reconstructs precise 3D human meshes with better alignment of pose and shape. 3DPSR is referred to as <strong>3D P</strong>ose and <strong>S</strong>hape <strong>R</strong>efinements. 3DPSR contains two modules (mesh deformation using pose-fitting and shape-fitting), in which mesh deformation using shape-fitting acts as a refinement module. Compared to existing methods, the proposed method, 3DPSR, delivers more enhanced MPVE and PA-MPJPE results, as well as more accurate 3D models of humans. 3DPSR significantly outperforms state-of-the-art human mesh reconstruction methods on challenging and standard datasets such as SURREAL, Human3.6M, and 3DPW across different scenarios with complex poses, establishing a new benchmark.</div></div>\",\"PeriodicalId\":50374,\"journal\":{\"name\":\"Image and Vision Computing\",\"volume\":\"152 \",\"pages\":\"Article 105311\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Image and Vision Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0262885624004165\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885624004165","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在计算机视觉时代,三维人体模型在游戏行业、布料解析、头像创建以及其他许多应用领域都受到了广泛关注。在这些领域中,拥有一个具有精确形状和姿势的三维人体模型对于获得逼真和高质量的结果至关重要。我们提出了一种名为 3DPSR 的方法,它使用单张二维图像重建精确的三维人体网格,并更好地对齐姿势和形状。3DPSR 全称为 3D Pose and Shape Refinements。3DPSR 包含两个模块(使用姿态拟合的网格变形和形状拟合),其中使用形状拟合的网格变形作为细化模块。与现有方法相比,所提出的 3DPSR 方法能提供更强的 MPVE 和 PA-MPJPE 结果,以及更精确的人体 3D 模型。在 SURREAL、Human3.6M 和 3DPW 等具有挑战性的标准数据集上,3DPSR 在不同场景和复杂姿势下的表现明显优于最先进的人体网格重建方法,树立了新的标杆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3DPSR: An innovative approach for pose and shape refinement in 3D human meshes from a single 2D image
In the era of computer vision, 3D human models are gaining a lot of interest in the gaming industry, cloth parsing, avatar creations, and many more applications. In these fields, having a precise 3D human model with accurate shape and pose is crucial for realistic and high-quality results. We proposed an approach called 3DPSR that uses a single 2D image and reconstructs precise 3D human meshes with better alignment of pose and shape. 3DPSR is referred to as 3D Pose and Shape Refinements. 3DPSR contains two modules (mesh deformation using pose-fitting and shape-fitting), in which mesh deformation using shape-fitting acts as a refinement module. Compared to existing methods, the proposed method, 3DPSR, delivers more enhanced MPVE and PA-MPJPE results, as well as more accurate 3D models of humans. 3DPSR significantly outperforms state-of-the-art human mesh reconstruction methods on challenging and standard datasets such as SURREAL, Human3.6M, and 3DPW across different scenarios with complex poses, establishing a new benchmark.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Image and Vision Computing
Image and Vision Computing 工程技术-工程:电子与电气
CiteScore
8.50
自引率
8.50%
发文量
143
审稿时长
7.8 months
期刊介绍: Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.
期刊最新文献
CF-SOLT: Real-time and accurate traffic accident detection using correlation filter-based tracking TransWild: Enhancing 3D interacting hands recovery in the wild with IoU-guided Transformer Machine learning applications in breast cancer prediction using mammography Channel and Spatial Enhancement Network for human parsing Non-negative subspace feature representation for few-shot learning in medical imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1