Mahdi Ghaemi Asl , Sami Ben Jabeur , Hela Nammouri , Kamel Bel Hadj Miled
{"title":"量子计算、人工智能和大数据存量对可再生和可持续能源的动态关联性","authors":"Mahdi Ghaemi Asl , Sami Ben Jabeur , Hela Nammouri , Kamel Bel Hadj Miled","doi":"10.1016/j.eneco.2024.108017","DOIUrl":null,"url":null,"abstract":"<div><div>This research aims to evaluate the accuracy of the long-term relationship between renewable and sustainable energy sectors and emerging technologies, including quantum computing, artificial intelligence (AI), and big data. Using a novel methodology that integrates the Time-Varying Parameter Vector Autoregressive (TVP-VAR) frequency connectedness approach with Long Short-Term Memory (LSTM) neural networks, the study examines the long-term interconnectedness, considering the dynamic nature of coefficients and covariance structures. The analysis spans from May 14, 2018, to September 6, 2023. It focuses on six critical clusters within the sustainable and renewable energy sectors: clean energy, green energy, solar energy, the water industry, wind energy, and the low-carbon industry. Additionally, the study explores two contemporary technology domains, AI and big data, alongside quantum computing. The findings reveal that AI and its associated technologies generally exhibit weaker connections to the renewable and sustainable energy sectors. However, specific pairs, such as those involving business intelligence and AI, show notable interconnectedness. Overall, quantum computing entities demonstrate lower levels of connectedness than the AI/significant data sector, with Microsoft standing out for its solid and broad connections to renewable and sustainable industries. Further analysis identifies distinct patterns, with AI and related technologies showing strong long-term memory connections with renewables and green energies. At the same time, platforms centered on business intelligence and AI display comparatively weaker long-term ties. Among the quantum computing companies, IBM and Google have shown superior performance through specific subsectors. Finally, this study offers valuable insights into the evolving dynamics and interconnectedness at the intersection of renewable and sustainable energies, quantum computing, and the AI/big data industries. The findings support strategic decision-making in sustainable energy transitions and underscore the significance of industry-specific factors in shaping long-term collaborations.</div></div>","PeriodicalId":11665,"journal":{"name":"Energy Economics","volume":"140 ","pages":"Article 108017"},"PeriodicalIF":13.6000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic connectedness of quantum computing, artificial intelligence, and big data stocks on renewable and sustainable energy\",\"authors\":\"Mahdi Ghaemi Asl , Sami Ben Jabeur , Hela Nammouri , Kamel Bel Hadj Miled\",\"doi\":\"10.1016/j.eneco.2024.108017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research aims to evaluate the accuracy of the long-term relationship between renewable and sustainable energy sectors and emerging technologies, including quantum computing, artificial intelligence (AI), and big data. Using a novel methodology that integrates the Time-Varying Parameter Vector Autoregressive (TVP-VAR) frequency connectedness approach with Long Short-Term Memory (LSTM) neural networks, the study examines the long-term interconnectedness, considering the dynamic nature of coefficients and covariance structures. The analysis spans from May 14, 2018, to September 6, 2023. It focuses on six critical clusters within the sustainable and renewable energy sectors: clean energy, green energy, solar energy, the water industry, wind energy, and the low-carbon industry. Additionally, the study explores two contemporary technology domains, AI and big data, alongside quantum computing. The findings reveal that AI and its associated technologies generally exhibit weaker connections to the renewable and sustainable energy sectors. However, specific pairs, such as those involving business intelligence and AI, show notable interconnectedness. Overall, quantum computing entities demonstrate lower levels of connectedness than the AI/significant data sector, with Microsoft standing out for its solid and broad connections to renewable and sustainable industries. Further analysis identifies distinct patterns, with AI and related technologies showing strong long-term memory connections with renewables and green energies. At the same time, platforms centered on business intelligence and AI display comparatively weaker long-term ties. Among the quantum computing companies, IBM and Google have shown superior performance through specific subsectors. Finally, this study offers valuable insights into the evolving dynamics and interconnectedness at the intersection of renewable and sustainable energies, quantum computing, and the AI/big data industries. The findings support strategic decision-making in sustainable energy transitions and underscore the significance of industry-specific factors in shaping long-term collaborations.</div></div>\",\"PeriodicalId\":11665,\"journal\":{\"name\":\"Energy Economics\",\"volume\":\"140 \",\"pages\":\"Article 108017\"},\"PeriodicalIF\":13.6000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0140988324007254\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140988324007254","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Dynamic connectedness of quantum computing, artificial intelligence, and big data stocks on renewable and sustainable energy
This research aims to evaluate the accuracy of the long-term relationship between renewable and sustainable energy sectors and emerging technologies, including quantum computing, artificial intelligence (AI), and big data. Using a novel methodology that integrates the Time-Varying Parameter Vector Autoregressive (TVP-VAR) frequency connectedness approach with Long Short-Term Memory (LSTM) neural networks, the study examines the long-term interconnectedness, considering the dynamic nature of coefficients and covariance structures. The analysis spans from May 14, 2018, to September 6, 2023. It focuses on six critical clusters within the sustainable and renewable energy sectors: clean energy, green energy, solar energy, the water industry, wind energy, and the low-carbon industry. Additionally, the study explores two contemporary technology domains, AI and big data, alongside quantum computing. The findings reveal that AI and its associated technologies generally exhibit weaker connections to the renewable and sustainable energy sectors. However, specific pairs, such as those involving business intelligence and AI, show notable interconnectedness. Overall, quantum computing entities demonstrate lower levels of connectedness than the AI/significant data sector, with Microsoft standing out for its solid and broad connections to renewable and sustainable industries. Further analysis identifies distinct patterns, with AI and related technologies showing strong long-term memory connections with renewables and green energies. At the same time, platforms centered on business intelligence and AI display comparatively weaker long-term ties. Among the quantum computing companies, IBM and Google have shown superior performance through specific subsectors. Finally, this study offers valuable insights into the evolving dynamics and interconnectedness at the intersection of renewable and sustainable energies, quantum computing, and the AI/big data industries. The findings support strategic decision-making in sustainable energy transitions and underscore the significance of industry-specific factors in shaping long-term collaborations.
期刊介绍:
Energy Economics is a field journal that focuses on energy economics and energy finance. It covers various themes including the exploitation, conversion, and use of energy, markets for energy commodities and derivatives, regulation and taxation, forecasting, environment and climate, international trade, development, and monetary policy. The journal welcomes contributions that utilize diverse methods such as experiments, surveys, econometrics, decomposition, simulation models, equilibrium models, optimization models, and analytical models. It publishes a combination of papers employing different methods to explore a wide range of topics. The journal's replication policy encourages the submission of replication studies, wherein researchers reproduce and extend the key results of original studies while explaining any differences. Energy Economics is indexed and abstracted in several databases including Environmental Abstracts, Fuel and Energy Abstracts, Social Sciences Citation Index, GEOBASE, Social & Behavioral Sciences, Journal of Economic Literature, INSPEC, and more.