Xinghua Liang , Shuhong Yun , Shangfeng Tang , Yifei Zhao , Lihong Chen , Siying Li , Qicheng Hu
{"title":"轻松合成用于锂离子电池的 Cu2O 纳米微球负极","authors":"Xinghua Liang , Shuhong Yun , Shangfeng Tang , Yifei Zhao , Lihong Chen , Siying Li , Qicheng Hu","doi":"10.1016/j.mseb.2024.117799","DOIUrl":null,"url":null,"abstract":"<div><div>Transition metal oxide anode materials exhibit high theoretical specific capacities and can meet the energy density requirements through reasonable design. In this work, a facile wet-chemical method to fabricate Cu<sub>2</sub>O nano-microspheres anode for lithium-ion batteries with controllable size varied from 0.4 ∼ 1.2 μm is introduced, which basically using copper acetate as copper precursor and ascorbic acid as reducing agent. The solvent composition (DI water only or DI water:Ethanol = 1:1), solution alkalinity (amount of NaOH input), and synthesis temperature are investigated as factors affecting the size and morphology of Cu<sub>2</sub>O nano-microspheres. The samples are characterized by X-ray diffraction, transmission electron microscope and scanning electron microscope. Nanoparticle cluster structure is observed in the reaction product with the bi-solvent system. With the optimized synthesis condition, the prepared Cu<sub>2</sub>O anode (size of ∼ 455 ± 41 nm) delivers an initial discharge capacity of 539 mAh/g at a current density of 0.5C, 100 cycles of cyclic discharge at 0.5C with a capacity retention rate of 84.73 %. At the current density of 2C, the specific capacity is 347 mAh/g. Even at a large current density of 5C, the specific capacity is still as high as 219 mAh/g, indicating good rate capability.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering B-advanced Functional Solid-state Materials","volume":"311 ","pages":"Article 117799"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facile synthesis of Cu2O nano-microspheres anode for lithium-ion batteries\",\"authors\":\"Xinghua Liang , Shuhong Yun , Shangfeng Tang , Yifei Zhao , Lihong Chen , Siying Li , Qicheng Hu\",\"doi\":\"10.1016/j.mseb.2024.117799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Transition metal oxide anode materials exhibit high theoretical specific capacities and can meet the energy density requirements through reasonable design. In this work, a facile wet-chemical method to fabricate Cu<sub>2</sub>O nano-microspheres anode for lithium-ion batteries with controllable size varied from 0.4 ∼ 1.2 μm is introduced, which basically using copper acetate as copper precursor and ascorbic acid as reducing agent. The solvent composition (DI water only or DI water:Ethanol = 1:1), solution alkalinity (amount of NaOH input), and synthesis temperature are investigated as factors affecting the size and morphology of Cu<sub>2</sub>O nano-microspheres. The samples are characterized by X-ray diffraction, transmission electron microscope and scanning electron microscope. Nanoparticle cluster structure is observed in the reaction product with the bi-solvent system. With the optimized synthesis condition, the prepared Cu<sub>2</sub>O anode (size of ∼ 455 ± 41 nm) delivers an initial discharge capacity of 539 mAh/g at a current density of 0.5C, 100 cycles of cyclic discharge at 0.5C with a capacity retention rate of 84.73 %. At the current density of 2C, the specific capacity is 347 mAh/g. Even at a large current density of 5C, the specific capacity is still as high as 219 mAh/g, indicating good rate capability.</div></div>\",\"PeriodicalId\":18233,\"journal\":{\"name\":\"Materials Science and Engineering B-advanced Functional Solid-state Materials\",\"volume\":\"311 \",\"pages\":\"Article 117799\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering B-advanced Functional Solid-state Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921510724006287\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering B-advanced Functional Solid-state Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510724006287","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Facile synthesis of Cu2O nano-microspheres anode for lithium-ion batteries
Transition metal oxide anode materials exhibit high theoretical specific capacities and can meet the energy density requirements through reasonable design. In this work, a facile wet-chemical method to fabricate Cu2O nano-microspheres anode for lithium-ion batteries with controllable size varied from 0.4 ∼ 1.2 μm is introduced, which basically using copper acetate as copper precursor and ascorbic acid as reducing agent. The solvent composition (DI water only or DI water:Ethanol = 1:1), solution alkalinity (amount of NaOH input), and synthesis temperature are investigated as factors affecting the size and morphology of Cu2O nano-microspheres. The samples are characterized by X-ray diffraction, transmission electron microscope and scanning electron microscope. Nanoparticle cluster structure is observed in the reaction product with the bi-solvent system. With the optimized synthesis condition, the prepared Cu2O anode (size of ∼ 455 ± 41 nm) delivers an initial discharge capacity of 539 mAh/g at a current density of 0.5C, 100 cycles of cyclic discharge at 0.5C with a capacity retention rate of 84.73 %. At the current density of 2C, the specific capacity is 347 mAh/g. Even at a large current density of 5C, the specific capacity is still as high as 219 mAh/g, indicating good rate capability.
期刊介绍:
The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.