{"title":"哺乳动物植入前发育过程中的基因组组织和稳定性","authors":"Shuangyi Xu , Dieter Egli","doi":"10.1016/j.dnarep.2024.103780","DOIUrl":null,"url":null,"abstract":"<div><div>A largely stable genome is required for normal development, even as genetic change is an integral aspect of reproduction, genetic adaptation and evolution. Recent studies highlight a critical window of mammalian development with intrinsic DNA replication stress and genome instability in the first cell divisions after fertilization. Patterns of DNA replication and genome stability are established very early in mammals, alongside patterns of nuclear organization, and before the emergence of gene expression patterns, and prior to cell specification and germline formation. The study of DNA replication and genome stability in the mammalian embryo provides a unique cellular system due to the resetting of the epigenome to a totipotent state, and the <em>de novo</em> establishment of the patterns of nuclear organization, gene expression, DNA methylation, histone modifications and DNA replication. Studies on DNA replication and genome stability in the early mammalian embryo is relevant for understanding both normal and disease-causing genetic variation, and to uncover basic principles of genome regulation.</div></div>","PeriodicalId":300,"journal":{"name":"DNA Repair","volume":"144 ","pages":"Article 103780"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genome organization and stability in mammalian pre-implantation development\",\"authors\":\"Shuangyi Xu , Dieter Egli\",\"doi\":\"10.1016/j.dnarep.2024.103780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A largely stable genome is required for normal development, even as genetic change is an integral aspect of reproduction, genetic adaptation and evolution. Recent studies highlight a critical window of mammalian development with intrinsic DNA replication stress and genome instability in the first cell divisions after fertilization. Patterns of DNA replication and genome stability are established very early in mammals, alongside patterns of nuclear organization, and before the emergence of gene expression patterns, and prior to cell specification and germline formation. The study of DNA replication and genome stability in the mammalian embryo provides a unique cellular system due to the resetting of the epigenome to a totipotent state, and the <em>de novo</em> establishment of the patterns of nuclear organization, gene expression, DNA methylation, histone modifications and DNA replication. Studies on DNA replication and genome stability in the early mammalian embryo is relevant for understanding both normal and disease-causing genetic variation, and to uncover basic principles of genome regulation.</div></div>\",\"PeriodicalId\":300,\"journal\":{\"name\":\"DNA Repair\",\"volume\":\"144 \",\"pages\":\"Article 103780\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DNA Repair\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568786424001563\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Repair","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568786424001563","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
摘要
正常发育需要一个基本稳定的基因组,尽管基因变化是繁殖、基因适应和进化不可或缺的一个方面。最近的研究突显了哺乳动物发育过程中的一个关键窗口期,即受精后第一次细胞分裂时,DNA 复制面临内在压力,基因组不稳定。哺乳动物的 DNA 复制模式和基因组稳定性很早就建立起来了,与核组织模式一起,在基因表达模式出现之前,在细胞规格化和生殖系形成之前。对哺乳动物胚胎中 DNA 复制和基因组稳定性的研究提供了一个独特的细胞系统,因为表观基因组重置为全能状态,核组织、基因表达、DNA 甲基化、组蛋白修饰和 DNA 复制模式从头建立。对哺乳动物早期胚胎的 DNA 复制和基因组稳定性进行研究,有助于了解正常和致病基因变异,并揭示基因组调控的基本原理。
Genome organization and stability in mammalian pre-implantation development
A largely stable genome is required for normal development, even as genetic change is an integral aspect of reproduction, genetic adaptation and evolution. Recent studies highlight a critical window of mammalian development with intrinsic DNA replication stress and genome instability in the first cell divisions after fertilization. Patterns of DNA replication and genome stability are established very early in mammals, alongside patterns of nuclear organization, and before the emergence of gene expression patterns, and prior to cell specification and germline formation. The study of DNA replication and genome stability in the mammalian embryo provides a unique cellular system due to the resetting of the epigenome to a totipotent state, and the de novo establishment of the patterns of nuclear organization, gene expression, DNA methylation, histone modifications and DNA replication. Studies on DNA replication and genome stability in the early mammalian embryo is relevant for understanding both normal and disease-causing genetic variation, and to uncover basic principles of genome regulation.
期刊介绍:
DNA Repair provides a forum for the comprehensive coverage of DNA repair and cellular responses to DNA damage. The journal publishes original observations on genetic, cellular, biochemical, structural and molecular aspects of DNA repair, mutagenesis, cell cycle regulation, apoptosis and other biological responses in cells exposed to genomic insult, as well as their relationship to human disease.
DNA Repair publishes full-length research articles, brief reports on research, and reviews. The journal welcomes articles describing databases, methods and new technologies supporting research on DNA repair and responses to DNA damage. Letters to the Editor, hot topics and classics in DNA repair, historical reflections, book reviews and meeting reports also will be considered for publication.