利用深度学习为毫米波 V2I 通信系统实现基于图像的波束跟踪

IF 7.9 1区 工程技术 Q1 ENGINEERING, CIVIL IEEE Transactions on Intelligent Transportation Systems Pub Date : 2024-09-26 DOI:10.1109/TITS.2024.3438875
Weizhi Zhong;Lulu Zhang;Haowen Jin;Xin Liu;Qiuming Zhu;Yi He;Farman Ali;Zhipeng Lin;Kai Mao;Tariq S. Durrani
{"title":"利用深度学习为毫米波 V2I 通信系统实现基于图像的波束跟踪","authors":"Weizhi Zhong;Lulu Zhang;Haowen Jin;Xin Liu;Qiuming Zhu;Yi He;Farman Ali;Zhipeng Lin;Kai Mao;Tariq S. Durrani","doi":"10.1109/TITS.2024.3438875","DOIUrl":null,"url":null,"abstract":"Effective beam alignment is essential for vehicle-to-infrastructure (V2I) millimeter wave (mmWave) communication systems, particularly in high-mobility vehicle scenarios. This paper explores a three-dimensional (3D) vehicle environment and introduces a novel deep learning (DL)-based beam search method that incorporates an image-based coding (IBC) technique. The mmWave beam search is approached as an image processing problem based on situational awareness. We propose IBC to leverage the locations, sizes, and information of vehicles, and utilize convolutional neural network (CNN) to train the image dataset. Consequently, the optimal beam pair index(BPI)can be determined. Simulation results demonstrate that the proposed beam search method achieves satisfactory performance in terms of accuracy and robustness compared to conventional methods.","PeriodicalId":13416,"journal":{"name":"IEEE Transactions on Intelligent Transportation Systems","volume":"25 11","pages":"19110-19116"},"PeriodicalIF":7.9000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image-Based Beam Tracking With Deep Learning for mmWave V2I Communication Systems\",\"authors\":\"Weizhi Zhong;Lulu Zhang;Haowen Jin;Xin Liu;Qiuming Zhu;Yi He;Farman Ali;Zhipeng Lin;Kai Mao;Tariq S. Durrani\",\"doi\":\"10.1109/TITS.2024.3438875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effective beam alignment is essential for vehicle-to-infrastructure (V2I) millimeter wave (mmWave) communication systems, particularly in high-mobility vehicle scenarios. This paper explores a three-dimensional (3D) vehicle environment and introduces a novel deep learning (DL)-based beam search method that incorporates an image-based coding (IBC) technique. The mmWave beam search is approached as an image processing problem based on situational awareness. We propose IBC to leverage the locations, sizes, and information of vehicles, and utilize convolutional neural network (CNN) to train the image dataset. Consequently, the optimal beam pair index(BPI)can be determined. Simulation results demonstrate that the proposed beam search method achieves satisfactory performance in terms of accuracy and robustness compared to conventional methods.\",\"PeriodicalId\":13416,\"journal\":{\"name\":\"IEEE Transactions on Intelligent Transportation Systems\",\"volume\":\"25 11\",\"pages\":\"19110-19116\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Intelligent Transportation Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10695819/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10695819/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

有效的波束对准对车对基础设施(V2I)毫米波(mmWave)通信系统至关重要,尤其是在高移动性车辆场景中。本文探讨了三维(3D)车辆环境,并介绍了一种基于深度学习(DL)的新型波束搜索方法,该方法结合了基于图像的编码(IBC)技术。毫米波波束搜索是一个基于态势感知的图像处理问题。我们提出了 IBC,以利用车辆的位置、大小和信息,并利用卷积神经网络(CNN)来训练图像数据集。因此,可以确定最佳波束对指数(BPI)。仿真结果表明,与传统方法相比,所提出的波束搜索方法在准确性和鲁棒性方面都取得了令人满意的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Image-Based Beam Tracking With Deep Learning for mmWave V2I Communication Systems
Effective beam alignment is essential for vehicle-to-infrastructure (V2I) millimeter wave (mmWave) communication systems, particularly in high-mobility vehicle scenarios. This paper explores a three-dimensional (3D) vehicle environment and introduces a novel deep learning (DL)-based beam search method that incorporates an image-based coding (IBC) technique. The mmWave beam search is approached as an image processing problem based on situational awareness. We propose IBC to leverage the locations, sizes, and information of vehicles, and utilize convolutional neural network (CNN) to train the image dataset. Consequently, the optimal beam pair index(BPI)can be determined. Simulation results demonstrate that the proposed beam search method achieves satisfactory performance in terms of accuracy and robustness compared to conventional methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Intelligent Transportation Systems
IEEE Transactions on Intelligent Transportation Systems 工程技术-工程:电子与电气
CiteScore
14.80
自引率
12.90%
发文量
1872
审稿时长
7.5 months
期刊介绍: The theoretical, experimental and operational aspects of electrical and electronics engineering and information technologies as applied to Intelligent Transportation Systems (ITS). Intelligent Transportation Systems are defined as those systems utilizing synergistic technologies and systems engineering concepts to develop and improve transportation systems of all kinds. The scope of this interdisciplinary activity includes the promotion, consolidation and coordination of ITS technical activities among IEEE entities, and providing a focus for cooperative activities, both internally and externally.
期刊最新文献
Table of Contents IEEE Intelligent Transportation Systems Society Information Scanning the Issue IEEE INTELLIGENT TRANSPORTATION SYSTEMS SOCIETY Fine-Grained Satisfaction Analysis of In-Vehicle Infotainment Systems Using Improved Kano Model and Cumulative Prospect Theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1