{"title":"湍流的昂萨格理论、约瑟夫森-安德森关系和达朗贝尔悖论","authors":"Hao Quan, Gregory L. Eyink","doi":"10.1007/s00220-024-05126-z","DOIUrl":null,"url":null,"abstract":"<div><p>The Josephson–Anderson relation, valid for the incompressible Navier–Stokes solutions which describe flow around a solid body, equates the power dissipated by drag instantaneously to the flux of vorticity across the flow lines of the potential Euler solution considered by d’Alembert. Its derivation involves a decomposition of the velocity field into this background potential-flow field and a solenoidal field corresponding to the rotational wake behind the body, with the flux term describing a transfer from the interaction energy between the two fields and into kinetic energy of the rotational flow. We establish the validity of the Josephson–Anderson relation for the weak solutions of the Euler equations obtained in the zero-viscosity limit, with one transfer term due to inviscid vorticity flux and the other due to a viscous skin-friction anomaly. Furthermore, we establish weak forms of the local balance equations for both interaction and rotational energies. We define nonlinear spatial fluxes of these energies and show that the asymptotic flux of interaction energy to the wall equals the anomalous skin-friction term in the Josephson–Anderson relation. However, when the Euler solution satisfies a condition of vanishing normal velocity at the wall, then the anomalous term vanishes. In this case, we can show also that the asymptotic flux of rotational energy to the wall must vanish and we obtain in the rotational wake the Onsager–Duchon–Robert relation between viscous dissipation anomaly and inertial dissipation due to scale-cascade. In this way we establish a precise connection between the Josephson–Anderson relation and the Onsager theory of turbulence, and we provide a novel resolution of the d’Alembert paradox.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"405 11","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Onsager Theory of Turbulence, the Josephson–Anderson Relation, and the D’Alembert Paradox\",\"authors\":\"Hao Quan, Gregory L. Eyink\",\"doi\":\"10.1007/s00220-024-05126-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Josephson–Anderson relation, valid for the incompressible Navier–Stokes solutions which describe flow around a solid body, equates the power dissipated by drag instantaneously to the flux of vorticity across the flow lines of the potential Euler solution considered by d’Alembert. Its derivation involves a decomposition of the velocity field into this background potential-flow field and a solenoidal field corresponding to the rotational wake behind the body, with the flux term describing a transfer from the interaction energy between the two fields and into kinetic energy of the rotational flow. We establish the validity of the Josephson–Anderson relation for the weak solutions of the Euler equations obtained in the zero-viscosity limit, with one transfer term due to inviscid vorticity flux and the other due to a viscous skin-friction anomaly. Furthermore, we establish weak forms of the local balance equations for both interaction and rotational energies. We define nonlinear spatial fluxes of these energies and show that the asymptotic flux of interaction energy to the wall equals the anomalous skin-friction term in the Josephson–Anderson relation. However, when the Euler solution satisfies a condition of vanishing normal velocity at the wall, then the anomalous term vanishes. In this case, we can show also that the asymptotic flux of rotational energy to the wall must vanish and we obtain in the rotational wake the Onsager–Duchon–Robert relation between viscous dissipation anomaly and inertial dissipation due to scale-cascade. In this way we establish a precise connection between the Josephson–Anderson relation and the Onsager theory of turbulence, and we provide a novel resolution of the d’Alembert paradox.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"405 11\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-024-05126-z\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05126-z","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Onsager Theory of Turbulence, the Josephson–Anderson Relation, and the D’Alembert Paradox
The Josephson–Anderson relation, valid for the incompressible Navier–Stokes solutions which describe flow around a solid body, equates the power dissipated by drag instantaneously to the flux of vorticity across the flow lines of the potential Euler solution considered by d’Alembert. Its derivation involves a decomposition of the velocity field into this background potential-flow field and a solenoidal field corresponding to the rotational wake behind the body, with the flux term describing a transfer from the interaction energy between the two fields and into kinetic energy of the rotational flow. We establish the validity of the Josephson–Anderson relation for the weak solutions of the Euler equations obtained in the zero-viscosity limit, with one transfer term due to inviscid vorticity flux and the other due to a viscous skin-friction anomaly. Furthermore, we establish weak forms of the local balance equations for both interaction and rotational energies. We define nonlinear spatial fluxes of these energies and show that the asymptotic flux of interaction energy to the wall equals the anomalous skin-friction term in the Josephson–Anderson relation. However, when the Euler solution satisfies a condition of vanishing normal velocity at the wall, then the anomalous term vanishes. In this case, we can show also that the asymptotic flux of rotational energy to the wall must vanish and we obtain in the rotational wake the Onsager–Duchon–Robert relation between viscous dissipation anomaly and inertial dissipation due to scale-cascade. In this way we establish a precise connection between the Josephson–Anderson relation and the Onsager theory of turbulence, and we provide a novel resolution of the d’Alembert paradox.
期刊介绍:
The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.