{"title":"生物喷气机与传统喷气机 A-1 燃料的燃烧和排放特性对比分析:综述","authors":"Abdulwasiu Muhammed Raji, Brady Manescau, Khaled Chetehouna, Ludovic Lamoot, Raphael Ogabi","doi":"10.1002/bbb.2682","DOIUrl":null,"url":null,"abstract":"<p>Conventional jet fuels derived from fossil sources contribute to greenhouse gas emissions and air pollution, leading to climate change. Recent studies have shown that biobased jet fuels from different feedstocks offer a more sustainable alternative to conventional fuels as they are derived from renewable biomass, reducing greenhouse gas emissions. The major feedstocks reviewed are jatropha curcas, camelina, karanja oil, waste cooking oil, and municipal solid waste. They offer diverse benefits for sustainable aviation fuel development. As a comparative analysis, this review examined jet fuel characteristics based on their physicochemical properties, namely energy content, viscosity, calorific value, cetane number, and freezing and flash points. The objective was to understand the influence of the properties on performance evaluation, environmental impact, and combustion characteristics. The properties of biojet fuels are compared with their fossil counterparts to validate their suitability as renewable alternatives and their benefits in terms of emissions reduction and engine performance. Biojet fuels perform better in terms of lower sulfur content, lower soot content, and a lower freezing point, their aromatic content, and their high cetane number. This study enhances the understanding of biojet fuels and their quality, and supports the development of sustainable fuel options. Overall, adherence to the American Society for Testing and Materials (ASTM) D7566-18 standard is crucial for the acceptance and integration of biojet fuels into the aviation sector. Future research should explore feedstocks such as wood biomass, wastepaper, and agricultural residues for biojet fuels. It should also investigate the combustion and emission characteristics of biosourced aviation fuel at higher blending ratios (>50% by volume) with fossil Jet A-1.</p>","PeriodicalId":55380,"journal":{"name":"Biofuels Bioproducts & Biorefining-Biofpr","volume":"18 6","pages":"2177-2195"},"PeriodicalIF":3.2000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of the combustion and emission characteristics of biojet and conventional Jet A-1 fuel: a review\",\"authors\":\"Abdulwasiu Muhammed Raji, Brady Manescau, Khaled Chetehouna, Ludovic Lamoot, Raphael Ogabi\",\"doi\":\"10.1002/bbb.2682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Conventional jet fuels derived from fossil sources contribute to greenhouse gas emissions and air pollution, leading to climate change. Recent studies have shown that biobased jet fuels from different feedstocks offer a more sustainable alternative to conventional fuels as they are derived from renewable biomass, reducing greenhouse gas emissions. The major feedstocks reviewed are jatropha curcas, camelina, karanja oil, waste cooking oil, and municipal solid waste. They offer diverse benefits for sustainable aviation fuel development. As a comparative analysis, this review examined jet fuel characteristics based on their physicochemical properties, namely energy content, viscosity, calorific value, cetane number, and freezing and flash points. The objective was to understand the influence of the properties on performance evaluation, environmental impact, and combustion characteristics. The properties of biojet fuels are compared with their fossil counterparts to validate their suitability as renewable alternatives and their benefits in terms of emissions reduction and engine performance. Biojet fuels perform better in terms of lower sulfur content, lower soot content, and a lower freezing point, their aromatic content, and their high cetane number. This study enhances the understanding of biojet fuels and their quality, and supports the development of sustainable fuel options. Overall, adherence to the American Society for Testing and Materials (ASTM) D7566-18 standard is crucial for the acceptance and integration of biojet fuels into the aviation sector. Future research should explore feedstocks such as wood biomass, wastepaper, and agricultural residues for biojet fuels. It should also investigate the combustion and emission characteristics of biosourced aviation fuel at higher blending ratios (>50% by volume) with fossil Jet A-1.</p>\",\"PeriodicalId\":55380,\"journal\":{\"name\":\"Biofuels Bioproducts & Biorefining-Biofpr\",\"volume\":\"18 6\",\"pages\":\"2177-2195\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofuels Bioproducts & Biorefining-Biofpr\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bbb.2682\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofuels Bioproducts & Biorefining-Biofpr","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bbb.2682","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Comparative analysis of the combustion and emission characteristics of biojet and conventional Jet A-1 fuel: a review
Conventional jet fuels derived from fossil sources contribute to greenhouse gas emissions and air pollution, leading to climate change. Recent studies have shown that biobased jet fuels from different feedstocks offer a more sustainable alternative to conventional fuels as they are derived from renewable biomass, reducing greenhouse gas emissions. The major feedstocks reviewed are jatropha curcas, camelina, karanja oil, waste cooking oil, and municipal solid waste. They offer diverse benefits for sustainable aviation fuel development. As a comparative analysis, this review examined jet fuel characteristics based on their physicochemical properties, namely energy content, viscosity, calorific value, cetane number, and freezing and flash points. The objective was to understand the influence of the properties on performance evaluation, environmental impact, and combustion characteristics. The properties of biojet fuels are compared with their fossil counterparts to validate their suitability as renewable alternatives and their benefits in terms of emissions reduction and engine performance. Biojet fuels perform better in terms of lower sulfur content, lower soot content, and a lower freezing point, their aromatic content, and their high cetane number. This study enhances the understanding of biojet fuels and their quality, and supports the development of sustainable fuel options. Overall, adherence to the American Society for Testing and Materials (ASTM) D7566-18 standard is crucial for the acceptance and integration of biojet fuels into the aviation sector. Future research should explore feedstocks such as wood biomass, wastepaper, and agricultural residues for biojet fuels. It should also investigate the combustion and emission characteristics of biosourced aviation fuel at higher blending ratios (>50% by volume) with fossil Jet A-1.
期刊介绍:
Biofuels, Bioproducts and Biorefining is a vital source of information on sustainable products, fuels and energy. Examining the spectrum of international scientific research and industrial development along the entire supply chain, The journal publishes a balanced mixture of peer-reviewed critical reviews, commentary, business news highlights, policy updates and patent intelligence. Biofuels, Bioproducts and Biorefining is dedicated to fostering growth in the biorenewables sector and serving its growing interdisciplinary community by providing a unique, systems-based insight into technologies in these fields as well as their industrial development.