Yitong Sun, Xueqi Cai, Wenjie He, Xinyu Ji, Liyan Zheng, Yonggang Shi, Qiue Cao
{"title":"通过单一荧光团的可逆 B←N 键形成和多重构型转换实现多态全彩发射","authors":"Yitong Sun, Xueqi Cai, Wenjie He, Xinyu Ji, Liyan Zheng, Yonggang Shi, Qiue Cao","doi":"10.1002/adom.202401445","DOIUrl":null,"url":null,"abstract":"<p>Multifunctional molecular switches have attracted much attention because of their unique stimulus response behavior and advanced applications. However, precise regulation of the structure for property enrichment is still a great challenge. Herein, the first case of a single-molecule switch BN-S with multiple structurally tunable and full-color fluorescent properties is reported. Interestingly, BN-S exhibits a butterfly-like “metamorphosis” crystal growth process accompanied by full-color fluorescence emission (including white light, CIE = 0.33, 0.33; 456 nm → 610 nm). It is shown that this is related to the reversible B←N bonding and the tunability of the spatial structure of the BN-S. Thus, BN-S exhibits superior multicolor tunability in different states (solid, liquid, and film), and its applications in white-light optical light emitting diodes (OLEDs) and multicolor fluorescent inks also show great promise. This will provide a new strategy for designing and synthesizing the development of multifunctional molecular switching materials and enriching the variety of organoboron luminescent materials.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"12 31","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Achieve Full-Color Emission in Multiple States through Reversible B←N Bond Formation and Multiple Configuration Transitions of a Single Fluorophore\",\"authors\":\"Yitong Sun, Xueqi Cai, Wenjie He, Xinyu Ji, Liyan Zheng, Yonggang Shi, Qiue Cao\",\"doi\":\"10.1002/adom.202401445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Multifunctional molecular switches have attracted much attention because of their unique stimulus response behavior and advanced applications. However, precise regulation of the structure for property enrichment is still a great challenge. Herein, the first case of a single-molecule switch BN-S with multiple structurally tunable and full-color fluorescent properties is reported. Interestingly, BN-S exhibits a butterfly-like “metamorphosis” crystal growth process accompanied by full-color fluorescence emission (including white light, CIE = 0.33, 0.33; 456 nm → 610 nm). It is shown that this is related to the reversible B←N bonding and the tunability of the spatial structure of the BN-S. Thus, BN-S exhibits superior multicolor tunability in different states (solid, liquid, and film), and its applications in white-light optical light emitting diodes (OLEDs) and multicolor fluorescent inks also show great promise. This will provide a new strategy for designing and synthesizing the development of multifunctional molecular switching materials and enriching the variety of organoboron luminescent materials.</p>\",\"PeriodicalId\":116,\"journal\":{\"name\":\"Advanced Optical Materials\",\"volume\":\"12 31\",\"pages\":\"\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Optical Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adom.202401445\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202401445","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Achieve Full-Color Emission in Multiple States through Reversible B←N Bond Formation and Multiple Configuration Transitions of a Single Fluorophore
Multifunctional molecular switches have attracted much attention because of their unique stimulus response behavior and advanced applications. However, precise regulation of the structure for property enrichment is still a great challenge. Herein, the first case of a single-molecule switch BN-S with multiple structurally tunable and full-color fluorescent properties is reported. Interestingly, BN-S exhibits a butterfly-like “metamorphosis” crystal growth process accompanied by full-color fluorescence emission (including white light, CIE = 0.33, 0.33; 456 nm → 610 nm). It is shown that this is related to the reversible B←N bonding and the tunability of the spatial structure of the BN-S. Thus, BN-S exhibits superior multicolor tunability in different states (solid, liquid, and film), and its applications in white-light optical light emitting diodes (OLEDs) and multicolor fluorescent inks also show great promise. This will provide a new strategy for designing and synthesizing the development of multifunctional molecular switching materials and enriching the variety of organoboron luminescent materials.
期刊介绍:
Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.