利用傅立叶变换红外在线分析优化异质连续流加氢:多目标贝叶斯优化与动力学建模的比较研究

IF 4.1 2区 工程技术 Q2 ENGINEERING, CHEMICAL Chemical Engineering Science Pub Date : 2024-11-05 DOI:10.1016/j.ces.2024.120901
Kejie Chai , Weida Xia , Runqiu Shen , Guihua Luo , Yingying Cheng , Weike Su , An Su
{"title":"利用傅立叶变换红外在线分析优化异质连续流加氢:多目标贝叶斯优化与动力学建模的比较研究","authors":"Kejie Chai ,&nbsp;Weida Xia ,&nbsp;Runqiu Shen ,&nbsp;Guihua Luo ,&nbsp;Yingying Cheng ,&nbsp;Weike Su ,&nbsp;An Su","doi":"10.1016/j.ces.2024.120901","DOIUrl":null,"url":null,"abstract":"<div><div>Heterogeneous continuous flow hydrogenation is important in the chemical industry, yet the simultaneous optimization of yield and productivity has historically been complex. This study introduces a heterogeneous continuous flow hydrogenation system specifically designed for preparing 2-amino-3-methylbenzoic acid (AMA), employing FTIR inline analysis coupled with an artificial neural network model for monitoring. We explored two distinct reaction optimization strategies: multi-objective Bayesian optimization (MOBO) and mechanism-based intrinsic kinetic modeling, executed in parallel to optimize reaction conditions. Remarkably, the MOBO approach achieved an optimal AMA yield (99%) and productivity (0.64 g/hour) within a limited number of iterations. In comparison, despite requiring extensive experimental data collection and equation fitting, the intrinsic kinetic modeling approach yielded a similar optimal result. Thus, while MOBO offers a more efficient route with fewer required experiments, kinetic modeling provides deeper insights into the optimization landscape but may be impacted by non-chemical kinetic phenomena and requires significant time and resources.</div></div>","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":"302 ","pages":"Article 120901"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of heterogeneous continuous flow hydrogenation using FTIR inline analysis: a comparative study of multi-objective Bayesian optimization and kinetic modeling\",\"authors\":\"Kejie Chai ,&nbsp;Weida Xia ,&nbsp;Runqiu Shen ,&nbsp;Guihua Luo ,&nbsp;Yingying Cheng ,&nbsp;Weike Su ,&nbsp;An Su\",\"doi\":\"10.1016/j.ces.2024.120901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Heterogeneous continuous flow hydrogenation is important in the chemical industry, yet the simultaneous optimization of yield and productivity has historically been complex. This study introduces a heterogeneous continuous flow hydrogenation system specifically designed for preparing 2-amino-3-methylbenzoic acid (AMA), employing FTIR inline analysis coupled with an artificial neural network model for monitoring. We explored two distinct reaction optimization strategies: multi-objective Bayesian optimization (MOBO) and mechanism-based intrinsic kinetic modeling, executed in parallel to optimize reaction conditions. Remarkably, the MOBO approach achieved an optimal AMA yield (99%) and productivity (0.64 g/hour) within a limited number of iterations. In comparison, despite requiring extensive experimental data collection and equation fitting, the intrinsic kinetic modeling approach yielded a similar optimal result. Thus, while MOBO offers a more efficient route with fewer required experiments, kinetic modeling provides deeper insights into the optimization landscape but may be impacted by non-chemical kinetic phenomena and requires significant time and resources.</div></div>\",\"PeriodicalId\":271,\"journal\":{\"name\":\"Chemical Engineering Science\",\"volume\":\"302 \",\"pages\":\"Article 120901\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009250924012016\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009250924012016","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

异相连续流氢化在化学工业中非常重要,但同时优化产量和生产率一直是个复杂的问题。本研究介绍了一种专为制备 2-氨基-3-甲基苯甲酸(AMA)而设计的异相连续流氢化系统,该系统采用傅立叶变换红外在线分析和人工神经网络模型进行监控。我们探索了两种不同的反应优化策略:多目标贝叶斯优化(MOBO)和基于机理的内在动力学建模,并行执行以优化反应条件。值得注意的是,MOBO 方法在有限的迭代次数内实现了最佳 AMA 产率(99%)和生产率(0.64 克/小时)。相比之下,尽管需要大量的实验数据收集和方程拟合,但内在动力学建模方法也获得了类似的最佳结果。因此,虽然 MOBO 提供了一条更有效的途径,所需的实验次数也更少,但动力学建模能更深入地了解优化情况,但可能会受到非化学动力学现象的影响,而且需要大量的时间和资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of heterogeneous continuous flow hydrogenation using FTIR inline analysis: a comparative study of multi-objective Bayesian optimization and kinetic modeling
Heterogeneous continuous flow hydrogenation is important in the chemical industry, yet the simultaneous optimization of yield and productivity has historically been complex. This study introduces a heterogeneous continuous flow hydrogenation system specifically designed for preparing 2-amino-3-methylbenzoic acid (AMA), employing FTIR inline analysis coupled with an artificial neural network model for monitoring. We explored two distinct reaction optimization strategies: multi-objective Bayesian optimization (MOBO) and mechanism-based intrinsic kinetic modeling, executed in parallel to optimize reaction conditions. Remarkably, the MOBO approach achieved an optimal AMA yield (99%) and productivity (0.64 g/hour) within a limited number of iterations. In comparison, despite requiring extensive experimental data collection and equation fitting, the intrinsic kinetic modeling approach yielded a similar optimal result. Thus, while MOBO offers a more efficient route with fewer required experiments, kinetic modeling provides deeper insights into the optimization landscape but may be impacted by non-chemical kinetic phenomena and requires significant time and resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Science
Chemical Engineering Science 工程技术-工程:化工
CiteScore
7.50
自引率
8.50%
发文量
1025
审稿时长
50 days
期刊介绍: Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline. Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.
期刊最新文献
Experimental study on the motion characteristics of non-spherical biomass particulate systems in a fluidization tube Synthesis of heterostructured microspheres for efficient removal of malachite green and basic fuchsine Redox-Animated Supra-Amphiphilic Host-Guest interfacial recognition for Reconfiguring Alginate-Derived hierarchical colloidal particles to enhance foliar pesticide deposition An effective strategy for coal-series kaolin utilization: Preparation of magnetic adsorbent for Congo red adsorption La-doped MnCo2O4.5 modified Ti/SnO2-Sb2O4/PbO2 anode for enhancing the electrochemical performance in zinc electrowinning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1