{"title":"LC3 浆料在早期龄期的每小时三分钟蠕变测试:先进的测试评估以及胶凝反应对收缩、弹性刚度和蠕变的影响","authors":"","doi":"10.1016/j.cemconres.2024.107705","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, hourly three-minute creep testing is used to elucidate the evolution of the viscoelastic behavior of cement pastes produced with ordinary Portland cement (OPC), limestone Portland cement (LPC), and limestone calcined clay cement (LC3), from 1 to 7 days after production. An innovative test evaluation protocol, accounting for shrinkage, is used to identify values of the elastic modulus, the creep modulus, and the creep exponent, <em>without</em> making assumptions. The S-shaped shrinkage evolution of the LC3 paste is explained by Portlandite dissolution and the associated redistribution of chemical shrinkage-induced compressive stresses to the remaining solid skeleton. The evolution of the elastic stiffness of the LC3 paste is explained by space filling by C-A-S-H phases. The small creep compliance of the LC3 paste is explained by C-A-S-H which creeps less than C-S-H, and by AFm phases which precipitate in nanoscopic slit pores between C-S-H structures, gluing viscous interfaces.</div></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":null,"pages":null},"PeriodicalIF":10.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hourly three-minute creep testing of an LC3 paste at early ages: Advanced test evaluation and the effects of the pozzolanic reaction on shrinkage, elastic stiffness, and creep\",\"authors\":\"\",\"doi\":\"10.1016/j.cemconres.2024.107705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, hourly three-minute creep testing is used to elucidate the evolution of the viscoelastic behavior of cement pastes produced with ordinary Portland cement (OPC), limestone Portland cement (LPC), and limestone calcined clay cement (LC3), from 1 to 7 days after production. An innovative test evaluation protocol, accounting for shrinkage, is used to identify values of the elastic modulus, the creep modulus, and the creep exponent, <em>without</em> making assumptions. The S-shaped shrinkage evolution of the LC3 paste is explained by Portlandite dissolution and the associated redistribution of chemical shrinkage-induced compressive stresses to the remaining solid skeleton. The evolution of the elastic stiffness of the LC3 paste is explained by space filling by C-A-S-H phases. The small creep compliance of the LC3 paste is explained by C-A-S-H which creeps less than C-S-H, and by AFm phases which precipitate in nanoscopic slit pores between C-S-H structures, gluing viscous interfaces.</div></div>\",\"PeriodicalId\":266,\"journal\":{\"name\":\"Cement and Concrete Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cement and Concrete Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008884624002862\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008884624002862","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Hourly three-minute creep testing of an LC3 paste at early ages: Advanced test evaluation and the effects of the pozzolanic reaction on shrinkage, elastic stiffness, and creep
In this study, hourly three-minute creep testing is used to elucidate the evolution of the viscoelastic behavior of cement pastes produced with ordinary Portland cement (OPC), limestone Portland cement (LPC), and limestone calcined clay cement (LC3), from 1 to 7 days after production. An innovative test evaluation protocol, accounting for shrinkage, is used to identify values of the elastic modulus, the creep modulus, and the creep exponent, without making assumptions. The S-shaped shrinkage evolution of the LC3 paste is explained by Portlandite dissolution and the associated redistribution of chemical shrinkage-induced compressive stresses to the remaining solid skeleton. The evolution of the elastic stiffness of the LC3 paste is explained by space filling by C-A-S-H phases. The small creep compliance of the LC3 paste is explained by C-A-S-H which creeps less than C-S-H, and by AFm phases which precipitate in nanoscopic slit pores between C-S-H structures, gluing viscous interfaces.
期刊介绍:
Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.