{"title":"修正熔盐的密度泛函理论计算和机器学习原子间位势,以实现实验精度","authors":"Hyunseok Lee, Takuji Oda","doi":"10.1021/acs.jpcc.4c03892","DOIUrl":null,"url":null,"abstract":"Despite the considerable success of density functional theory (DFT) in a broad class of materials, there are no exchange–correlation functionals or dispersion corrections that can systematically achieve high accuracy in molten salt simulations; for example, the density is often significantly underestimated. This study proposes a method to construct a correction potential that can fill the difference between DFT and experiments, using KCl as a test case. First, a machine learning interatomic potential (MLIP) with DFT accuracy was constructed. Subsequently, a correction potential was prepared to remove residual stresses brought by the MLIP at experimental densities. It was found that a small cation–anion pairwise correction potential is sufficient to significantly improve not only the density but also other material properties, suppressing calculation errors to a level comparable to the deviation of experimental data. This method is versatile and is expected to help realize experimental accuracy in molten salt simulations.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"150 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correction to Density Functional Theory Calculations and Machine Learning Interatomic Potentials for Molten Salts to Achieve Experimental Accuracy\",\"authors\":\"Hyunseok Lee, Takuji Oda\",\"doi\":\"10.1021/acs.jpcc.4c03892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite the considerable success of density functional theory (DFT) in a broad class of materials, there are no exchange–correlation functionals or dispersion corrections that can systematically achieve high accuracy in molten salt simulations; for example, the density is often significantly underestimated. This study proposes a method to construct a correction potential that can fill the difference between DFT and experiments, using KCl as a test case. First, a machine learning interatomic potential (MLIP) with DFT accuracy was constructed. Subsequently, a correction potential was prepared to remove residual stresses brought by the MLIP at experimental densities. It was found that a small cation–anion pairwise correction potential is sufficient to significantly improve not only the density but also other material properties, suppressing calculation errors to a level comparable to the deviation of experimental data. This method is versatile and is expected to help realize experimental accuracy in molten salt simulations.\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"150 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpcc.4c03892\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c03892","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Correction to Density Functional Theory Calculations and Machine Learning Interatomic Potentials for Molten Salts to Achieve Experimental Accuracy
Despite the considerable success of density functional theory (DFT) in a broad class of materials, there are no exchange–correlation functionals or dispersion corrections that can systematically achieve high accuracy in molten salt simulations; for example, the density is often significantly underestimated. This study proposes a method to construct a correction potential that can fill the difference between DFT and experiments, using KCl as a test case. First, a machine learning interatomic potential (MLIP) with DFT accuracy was constructed. Subsequently, a correction potential was prepared to remove residual stresses brought by the MLIP at experimental densities. It was found that a small cation–anion pairwise correction potential is sufficient to significantly improve not only the density but also other material properties, suppressing calculation errors to a level comparable to the deviation of experimental data. This method is versatile and is expected to help realize experimental accuracy in molten salt simulations.
期刊介绍:
The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.