{"title":"基于位点特异性标记技术的新型无细胞和病毒 SARS-CoV-2 中和抗体 ELISA。","authors":"Hongliang Liu, Tiantian Liu, Aiping Wang, Chao Liang, Xifang Zhu, Jingming Zhou, Yumei Chen, Yankai Liu, Yanhua Qi, Wenjing Chen, Gaiping Zhang","doi":"10.1021/acs.analchem.4c03574","DOIUrl":null,"url":null,"abstract":"<p><p>The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to the global spread of coronavirus disease 2019 (COVID-19), creating an urgent need for updated methods to evaluate immune responses to vaccines and therapeutic strategies. In this study, we introduce a novel cell-free, virus-free SARS-CoV-2 neutralizing antibody ELISA (NAb-ELISA), which is based on competitive inhibition of the receptor binding domain (RBD) of spike protein binding to the angiotensin-converting enzyme 2 (ACE2) receptor. In this method, site-specific biotinylated hACE2-Fc-Avi recombinant protein is immobilized onto a 96-well plate for capture, and the RBD-Fc-vHRP recombinant proteins serve as detection probes. Evaluation of sera from wild type (WT) or Delta RBD-immunized mice using the NAb-ELISA and pseudovirus neutralization tests (pVNTs) demonstrated strong correlations between assays (<i>R</i><sup>2</sup> = 0.91 and 0.90 for the WT and Delta groups, respectively). Additionally, the NAb-ELISA successfully detected cross-neutralizing activity in sera, though with slightly lower correlation to pVNT (<i>R</i><sup>2</sup> = 0.70-0.83). By employing NAb-ELISA instead of an indirect ELISA for hybridoma screening, five monoclonal antibodies (mAbs) with neutralizing activities against WT, Delta, and BA.2 pseudoviruses were obtained. This assay offers a straightforward, rapid, and safe approach to characterizing vaccine-induced antibody responses and mAb neutralization activity. Notably, the NAb-ELISA platform can be quickly adapted to assess neutralizing antibody responses against emerging mutant strains, addressing the rapid mutation of the virus.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":" ","pages":"18437-18444"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Cell- and Virus-Free SARS-CoV-2 Neutralizing Antibody ELISA Based on Site-Specific Labeling Technology.\",\"authors\":\"Hongliang Liu, Tiantian Liu, Aiping Wang, Chao Liang, Xifang Zhu, Jingming Zhou, Yumei Chen, Yankai Liu, Yanhua Qi, Wenjing Chen, Gaiping Zhang\",\"doi\":\"10.1021/acs.analchem.4c03574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to the global spread of coronavirus disease 2019 (COVID-19), creating an urgent need for updated methods to evaluate immune responses to vaccines and therapeutic strategies. In this study, we introduce a novel cell-free, virus-free SARS-CoV-2 neutralizing antibody ELISA (NAb-ELISA), which is based on competitive inhibition of the receptor binding domain (RBD) of spike protein binding to the angiotensin-converting enzyme 2 (ACE2) receptor. In this method, site-specific biotinylated hACE2-Fc-Avi recombinant protein is immobilized onto a 96-well plate for capture, and the RBD-Fc-vHRP recombinant proteins serve as detection probes. Evaluation of sera from wild type (WT) or Delta RBD-immunized mice using the NAb-ELISA and pseudovirus neutralization tests (pVNTs) demonstrated strong correlations between assays (<i>R</i><sup>2</sup> = 0.91 and 0.90 for the WT and Delta groups, respectively). Additionally, the NAb-ELISA successfully detected cross-neutralizing activity in sera, though with slightly lower correlation to pVNT (<i>R</i><sup>2</sup> = 0.70-0.83). By employing NAb-ELISA instead of an indirect ELISA for hybridoma screening, five monoclonal antibodies (mAbs) with neutralizing activities against WT, Delta, and BA.2 pseudoviruses were obtained. This assay offers a straightforward, rapid, and safe approach to characterizing vaccine-induced antibody responses and mAb neutralization activity. Notably, the NAb-ELISA platform can be quickly adapted to assess neutralizing antibody responses against emerging mutant strains, addressing the rapid mutation of the virus.</p>\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\" \",\"pages\":\"18437-18444\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.4c03574\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c03574","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
A Novel Cell- and Virus-Free SARS-CoV-2 Neutralizing Antibody ELISA Based on Site-Specific Labeling Technology.
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to the global spread of coronavirus disease 2019 (COVID-19), creating an urgent need for updated methods to evaluate immune responses to vaccines and therapeutic strategies. In this study, we introduce a novel cell-free, virus-free SARS-CoV-2 neutralizing antibody ELISA (NAb-ELISA), which is based on competitive inhibition of the receptor binding domain (RBD) of spike protein binding to the angiotensin-converting enzyme 2 (ACE2) receptor. In this method, site-specific biotinylated hACE2-Fc-Avi recombinant protein is immobilized onto a 96-well plate for capture, and the RBD-Fc-vHRP recombinant proteins serve as detection probes. Evaluation of sera from wild type (WT) or Delta RBD-immunized mice using the NAb-ELISA and pseudovirus neutralization tests (pVNTs) demonstrated strong correlations between assays (R2 = 0.91 and 0.90 for the WT and Delta groups, respectively). Additionally, the NAb-ELISA successfully detected cross-neutralizing activity in sera, though with slightly lower correlation to pVNT (R2 = 0.70-0.83). By employing NAb-ELISA instead of an indirect ELISA for hybridoma screening, five monoclonal antibodies (mAbs) with neutralizing activities against WT, Delta, and BA.2 pseudoviruses were obtained. This assay offers a straightforward, rapid, and safe approach to characterizing vaccine-induced antibody responses and mAb neutralization activity. Notably, the NAb-ELISA platform can be quickly adapted to assess neutralizing antibody responses against emerging mutant strains, addressing the rapid mutation of the virus.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.