Pâmella Cordeiro, Victor Menezes, Alix Y Bastidas Ángel, Karine N de Andrade, Rodolfo G Fiorot, Eduardo E Alberto, Vanessa Nascimento
{"title":"钙原键驱动的烷基化反应:硒氧化物-柱[5]炔作为水中置换反应的可回收催化剂。","authors":"Pâmella Cordeiro, Victor Menezes, Alix Y Bastidas Ángel, Karine N de Andrade, Rodolfo G Fiorot, Eduardo E Alberto, Vanessa Nascimento","doi":"10.1002/asia.202400916","DOIUrl":null,"url":null,"abstract":"<p><p>A novel strategy to catalyze alkylation reactions through chalcogen bond interaction using a supramolecular structure is presented herein. Utilizing just 1.0 mol % of selenoxide-pillar[5]arene (P[5]SeO) as the catalyst we achieved efficient catalysis in the cyanation of benzyl bromide in water. Our approach demonstrated high efficiency and effectiveness, with the results supported by designed control experiments and theoretical models, highlighting the catalytic effect of the pillar[5]arene through noncovalent interactions. Quantum-chemical calculations (ωB97X-D/def2-TZVP@SMD) pointed out that the catalyzed cyanation reaction followed an S<sub>N</sub>2-like mechanism, with energy barriers (ΔH<sup>≠</sup>) ranging from 16.7 to 18.2 kcal mol<sup>-1</sup>, exhibiting dissociative character depending on the para-substituent. <sup>1</sup>H NMR analysis revealed that P[5]SeO acted as a catalyst through inclusion complex formation, facilitating the transfer of the electrophilic substrate to the aqueous solution for nucleophilic displacement. Our reaction protocol proved applicable to various substrates, including aromatic and alpha-carbonyl derivatives. The use of sodium azide as the nucleophile was also feasible. Importantly, our method allowed scalability, and the catalyst P[5]SeO could be recovered and reused effectively for multiple reaction cycles, showcasing sustainability.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202400916"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chalcogen Bond-Driven Alkylations: Selenoxide-Pillar[5]arene as a Recyclable Catalyst for Displacement Reactions in Water.\",\"authors\":\"Pâmella Cordeiro, Victor Menezes, Alix Y Bastidas Ángel, Karine N de Andrade, Rodolfo G Fiorot, Eduardo E Alberto, Vanessa Nascimento\",\"doi\":\"10.1002/asia.202400916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A novel strategy to catalyze alkylation reactions through chalcogen bond interaction using a supramolecular structure is presented herein. Utilizing just 1.0 mol % of selenoxide-pillar[5]arene (P[5]SeO) as the catalyst we achieved efficient catalysis in the cyanation of benzyl bromide in water. Our approach demonstrated high efficiency and effectiveness, with the results supported by designed control experiments and theoretical models, highlighting the catalytic effect of the pillar[5]arene through noncovalent interactions. Quantum-chemical calculations (ωB97X-D/def2-TZVP@SMD) pointed out that the catalyzed cyanation reaction followed an S<sub>N</sub>2-like mechanism, with energy barriers (ΔH<sup>≠</sup>) ranging from 16.7 to 18.2 kcal mol<sup>-1</sup>, exhibiting dissociative character depending on the para-substituent. <sup>1</sup>H NMR analysis revealed that P[5]SeO acted as a catalyst through inclusion complex formation, facilitating the transfer of the electrophilic substrate to the aqueous solution for nucleophilic displacement. Our reaction protocol proved applicable to various substrates, including aromatic and alpha-carbonyl derivatives. The use of sodium azide as the nucleophile was also feasible. Importantly, our method allowed scalability, and the catalyst P[5]SeO could be recovered and reused effectively for multiple reaction cycles, showcasing sustainability.</p>\",\"PeriodicalId\":145,\"journal\":{\"name\":\"Chemistry - An Asian Journal\",\"volume\":\" \",\"pages\":\"e202400916\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry - An Asian Journal\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1002/asia.202400916\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202400916","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Chalcogen Bond-Driven Alkylations: Selenoxide-Pillar[5]arene as a Recyclable Catalyst for Displacement Reactions in Water.
A novel strategy to catalyze alkylation reactions through chalcogen bond interaction using a supramolecular structure is presented herein. Utilizing just 1.0 mol % of selenoxide-pillar[5]arene (P[5]SeO) as the catalyst we achieved efficient catalysis in the cyanation of benzyl bromide in water. Our approach demonstrated high efficiency and effectiveness, with the results supported by designed control experiments and theoretical models, highlighting the catalytic effect of the pillar[5]arene through noncovalent interactions. Quantum-chemical calculations (ωB97X-D/def2-TZVP@SMD) pointed out that the catalyzed cyanation reaction followed an SN2-like mechanism, with energy barriers (ΔH≠) ranging from 16.7 to 18.2 kcal mol-1, exhibiting dissociative character depending on the para-substituent. 1H NMR analysis revealed that P[5]SeO acted as a catalyst through inclusion complex formation, facilitating the transfer of the electrophilic substrate to the aqueous solution for nucleophilic displacement. Our reaction protocol proved applicable to various substrates, including aromatic and alpha-carbonyl derivatives. The use of sodium azide as the nucleophile was also feasible. Importantly, our method allowed scalability, and the catalyst P[5]SeO could be recovered and reused effectively for multiple reaction cycles, showcasing sustainability.
期刊介绍:
Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics.
Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews.
A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal.
Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).