通过抑制单核细胞趋化蛋白-1、细胞间粘附分子-1、高迁移率基团框 1 和核因子卡巴 B,补充芦替卡品对顺铂诱导的大鼠肾毒性有改善作用

IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biotechnology and applied biochemistry Pub Date : 2024-11-06 DOI:10.1002/bab.2692
Dong Zhang, Rui Jin, Guoxing Li, CaiFeng Zhang, Yanhong Zhou
{"title":"通过抑制单核细胞趋化蛋白-1、细胞间粘附分子-1、高迁移率基团框 1 和核因子卡巴 B,补充芦替卡品对顺铂诱导的大鼠肾毒性有改善作用","authors":"Dong Zhang, Rui Jin, Guoxing Li, CaiFeng Zhang, Yanhong Zhou","doi":"10.1002/bab.2692","DOIUrl":null,"url":null,"abstract":"<p><p>Cisplatin, the pioneering heavy metal compound, stands out as a potent drug for the treatment of various solid tumors. However, its clinical utility is hampered by notable toxicity and adverse effects, particularly nephrotoxicity. The potency of rutecarpine, a phytochemical, in mitigating cisplatin-induced nephrotoxicity was assessed in the present study. In this experimental setup, healthy male Wistar rats were grouped into four and Group I rats served as the control group, receiving only vehicle control. Group II rats were subjected to cisplatin treatment alone, administered intraperitoneally at a dosage of 7 mg/kg body weight on the 19th, 20th, and 21st days. Group III and IV rats were orally administered with rutecarpine at doses of 10 and 20 mg/kg body weight, respectively, starting from Day 1 and continuing daily for 21 days. Additionally, they were injected intraperitoneally with cisplatin at the same dosage and schedule as Group II. Relative kidney weight and renal biochemical markers blood urea nitrogen, lactate dehydrogenase, serum urea, and creatinine were measured to assess rutecarpine inhibitory potency against cisplatin toxicity. Markers of oxidative damage and antioxidants levels were quantified in the ruteacarpine- and cisplatin-treated rats. The study investigated the anti-inflammatory property of rutecarpine in cisplatin-induced nephrotoxicity by analyzing inflammatory cytokines. Renal tissue levels of monocyte chemoattractant protein-1, intercellular adhesion molecule-1, high-mobility group box 1, and nuclear factor kappa B, key markers of nephrotoxicity, were quantified to assess rutecarpine's potential to mitigate cisplatin-triggered damage. Histopathological examinations were performed to confirm the impact of rutecarpine against cisplatin-induced nephrotoxicity. Treatment with rutecarpine notably reduced renal biochemical markers, prevented renal edema, and attenuated oxidative stress-induced damage in cisplatin-treated rats. Both inflammatory and nephrotoxicity markers showed significant decreases in rats treated with rutecarpine along with cisplatin. Histological analysis affirmed that rutecarpine pretreatment effectively prevented cisplatin-induced nephrotoxicity. The study findings demonstrate that rutecarpine ameliorates cisplatin-triggered nephrotoxicity through its antioxidant and anti-inflammatory properties, suggesting that rutecarpine supplementation alongside cisplatin treatment could potentially reduce nephrotoxicity in cancer patients.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ameliorative effect of rutecarpine supplementation against cisplatin-induced nephrotoxicity in rats via inhibition of monocyte chemoattractant protein-1, intercellular adhesion molecule-1, high-mobility group box 1, and nuclear factor kappa B.\",\"authors\":\"Dong Zhang, Rui Jin, Guoxing Li, CaiFeng Zhang, Yanhong Zhou\",\"doi\":\"10.1002/bab.2692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cisplatin, the pioneering heavy metal compound, stands out as a potent drug for the treatment of various solid tumors. However, its clinical utility is hampered by notable toxicity and adverse effects, particularly nephrotoxicity. The potency of rutecarpine, a phytochemical, in mitigating cisplatin-induced nephrotoxicity was assessed in the present study. In this experimental setup, healthy male Wistar rats were grouped into four and Group I rats served as the control group, receiving only vehicle control. Group II rats were subjected to cisplatin treatment alone, administered intraperitoneally at a dosage of 7 mg/kg body weight on the 19th, 20th, and 21st days. Group III and IV rats were orally administered with rutecarpine at doses of 10 and 20 mg/kg body weight, respectively, starting from Day 1 and continuing daily for 21 days. Additionally, they were injected intraperitoneally with cisplatin at the same dosage and schedule as Group II. Relative kidney weight and renal biochemical markers blood urea nitrogen, lactate dehydrogenase, serum urea, and creatinine were measured to assess rutecarpine inhibitory potency against cisplatin toxicity. Markers of oxidative damage and antioxidants levels were quantified in the ruteacarpine- and cisplatin-treated rats. The study investigated the anti-inflammatory property of rutecarpine in cisplatin-induced nephrotoxicity by analyzing inflammatory cytokines. Renal tissue levels of monocyte chemoattractant protein-1, intercellular adhesion molecule-1, high-mobility group box 1, and nuclear factor kappa B, key markers of nephrotoxicity, were quantified to assess rutecarpine's potential to mitigate cisplatin-triggered damage. Histopathological examinations were performed to confirm the impact of rutecarpine against cisplatin-induced nephrotoxicity. Treatment with rutecarpine notably reduced renal biochemical markers, prevented renal edema, and attenuated oxidative stress-induced damage in cisplatin-treated rats. Both inflammatory and nephrotoxicity markers showed significant decreases in rats treated with rutecarpine along with cisplatin. Histological analysis affirmed that rutecarpine pretreatment effectively prevented cisplatin-induced nephrotoxicity. The study findings demonstrate that rutecarpine ameliorates cisplatin-triggered nephrotoxicity through its antioxidant and anti-inflammatory properties, suggesting that rutecarpine supplementation alongside cisplatin treatment could potentially reduce nephrotoxicity in cancer patients.</p>\",\"PeriodicalId\":9274,\"journal\":{\"name\":\"Biotechnology and applied biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology and applied biochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/bab.2692\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and applied biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bab.2692","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

顺铂是一种开创性的重金属化合物,是治疗各种实体瘤的有效药物。然而,其显著的毒性和不良反应,尤其是肾毒性,阻碍了它在临床上的应用。本研究评估了植物化学物质芦替卡品在减轻顺铂诱导的肾毒性方面的功效。在本实验中,健康雄性 Wistar 大鼠被分为四组,I 组大鼠作为对照组,只接受药物对照。第 19、20 和 21 天,第 II 组大鼠腹腔注射顺铂,剂量为每公斤体重 7 毫克。第三组和第四组大鼠分别口服鲁替卡平,剂量为每公斤体重 10 毫克和 20 毫克,从第 1 天开始,每天一次,持续 21 天。此外,它们还腹腔注射顺铂,剂量和时间与第二组相同。测定肾脏相对重量和肾脏生化指标血尿素氮、乳酸脱氢酶、血清尿素和肌酐,以评估芦替卡品对顺铂毒性的抑制作用。对鲁替卡品和顺铂治疗大鼠的氧化损伤标志物和抗氧化剂水平进行了量化。该研究通过分析炎症细胞因子,研究了芦替卡品在顺铂诱导的肾毒性中的抗炎特性。研究人员对肾组织中的单核细胞趋化蛋白-1、细胞间粘附分子-1、高流动性基团框 1 和核因子卡巴 B(肾毒性的关键标志物)水平进行了量化,以评估芦替卡品减轻顺铂引发的损伤的潜力。组织病理学检查证实了芦替卡品对顺铂诱导的肾毒性的影响。使用芦替卡品治疗后,顺铂治疗大鼠的肾脏生化指标明显降低,肾脏水肿得到预防,氧化应激诱导的损伤也有所减轻。在使用芦替卡品和顺铂的大鼠中,炎症和肾毒性指标均有显著下降。组织学分析证实,芦替卡品可有效预防顺铂诱导的肾毒性。研究结果表明,芦替卡品可通过其抗氧化和抗炎特性改善顺铂诱发的肾毒性,这表明在顺铂治疗的同时补充芦替卡品有可能减轻癌症患者的肾毒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ameliorative effect of rutecarpine supplementation against cisplatin-induced nephrotoxicity in rats via inhibition of monocyte chemoattractant protein-1, intercellular adhesion molecule-1, high-mobility group box 1, and nuclear factor kappa B.

Cisplatin, the pioneering heavy metal compound, stands out as a potent drug for the treatment of various solid tumors. However, its clinical utility is hampered by notable toxicity and adverse effects, particularly nephrotoxicity. The potency of rutecarpine, a phytochemical, in mitigating cisplatin-induced nephrotoxicity was assessed in the present study. In this experimental setup, healthy male Wistar rats were grouped into four and Group I rats served as the control group, receiving only vehicle control. Group II rats were subjected to cisplatin treatment alone, administered intraperitoneally at a dosage of 7 mg/kg body weight on the 19th, 20th, and 21st days. Group III and IV rats were orally administered with rutecarpine at doses of 10 and 20 mg/kg body weight, respectively, starting from Day 1 and continuing daily for 21 days. Additionally, they were injected intraperitoneally with cisplatin at the same dosage and schedule as Group II. Relative kidney weight and renal biochemical markers blood urea nitrogen, lactate dehydrogenase, serum urea, and creatinine were measured to assess rutecarpine inhibitory potency against cisplatin toxicity. Markers of oxidative damage and antioxidants levels were quantified in the ruteacarpine- and cisplatin-treated rats. The study investigated the anti-inflammatory property of rutecarpine in cisplatin-induced nephrotoxicity by analyzing inflammatory cytokines. Renal tissue levels of monocyte chemoattractant protein-1, intercellular adhesion molecule-1, high-mobility group box 1, and nuclear factor kappa B, key markers of nephrotoxicity, were quantified to assess rutecarpine's potential to mitigate cisplatin-triggered damage. Histopathological examinations were performed to confirm the impact of rutecarpine against cisplatin-induced nephrotoxicity. Treatment with rutecarpine notably reduced renal biochemical markers, prevented renal edema, and attenuated oxidative stress-induced damage in cisplatin-treated rats. Both inflammatory and nephrotoxicity markers showed significant decreases in rats treated with rutecarpine along with cisplatin. Histological analysis affirmed that rutecarpine pretreatment effectively prevented cisplatin-induced nephrotoxicity. The study findings demonstrate that rutecarpine ameliorates cisplatin-triggered nephrotoxicity through its antioxidant and anti-inflammatory properties, suggesting that rutecarpine supplementation alongside cisplatin treatment could potentially reduce nephrotoxicity in cancer patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology and applied biochemistry
Biotechnology and applied biochemistry 工程技术-生化与分子生物学
CiteScore
6.00
自引率
7.10%
发文量
117
审稿时长
3 months
期刊介绍: Published since 1979, Biotechnology and Applied Biochemistry is dedicated to the rapid publication of high quality, significant research at the interface between life sciences and their technological exploitation. The Editors will consider papers for publication based on their novelty and impact as well as their contribution to the advancement of medical biotechnology and industrial biotechnology, covering cutting-edge research in synthetic biology, systems biology, metabolic engineering, bioengineering, biomaterials, biosensing, and nano-biotechnology.
期刊最新文献
Concanavalin A-activated magnetic nanoparticles as an affine material for urinary exosome isolation. The Annexin A1 Protein Mimetic Peptide Ac2-26 prevents cellular senescence of CHON-001 chondrocytes against tumor necrosis factor-α via the Nrf2/NF-κB pathway. Spatio-temporal localization of P21-activated kinase in endometrial cancer. Ameliorative effect of rutecarpine supplementation against cisplatin-induced nephrotoxicity in rats via inhibition of monocyte chemoattractant protein-1, intercellular adhesion molecule-1, high-mobility group box 1, and nuclear factor kappa B. Organ toxicities associated with diet-induced obesity in rats: Investigation of changes in activities selected enzymes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1