miR-144/451:在炎症中的调节作用

IF 2.2 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL Current molecular medicine Pub Date : 2024-11-05 DOI:10.2174/0115665240327822241104060015
Jiahao Zhu, Yanhua Feng, Lingxiao Zhang, Xialing Pang, Sheng He, Lei Fang
{"title":"miR-144/451:在炎症中的调节作用","authors":"Jiahao Zhu, Yanhua Feng, Lingxiao Zhang, Xialing Pang, Sheng He, Lei Fang","doi":"10.2174/0115665240327822241104060015","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Inflammation is the natural defense mechanism of the body in response to injury, infection, or other stimuli. Excessive or persistent inflammatory responses can lead to the development of inflammatory diseases. Therefore, elucidating the regulatory mechanisms of inflammatory cells is crucial for understanding the pathogenesis of such diseases and devising novel therapeutic approaches. Moreover, miR-144/451 plays an important role in erythroid maturity and tumour development. Herein, we have reviewed the regulatory role of miR-144/451 in inflammation.</p><p><strong>Methods: </strong>Papers on miR-144, miR-451, and inflammation were retrieved from PubMed and Web of Science to be analysed and summarised.</p><p><strong>Results: </strong>miR-144/451 plays a significant role in modulating inflammatory responses. Pro- and anti-inflammatory gene transcription is regulated by miR-144/451 binding to the 3' untranslated regions. Studies have shown that miR-451 inhibits the activation of various inflammatory cells, including macrophages, neutrophils, and T lymphocytes, thereby reducing the release of inflammatory mediators. However, miR-144 expression varies in different inflammatory diseases. miR-144 expression is downregulated in macrophages after induction by lipopolysaccharide, cysteine, or Mycobacterium tuberculosis, which promotes the secretion of inflammatory mediators; nonetheless, miR-144-3p overexpression in macrophages can aggravate atherosclerosis. Meanwhile, miR-144 overexpression prevents disruption of the lung endothelial cell barrier, whereas it exacerbates endothelial cell injury in Crohn's disease.</p><p><strong>Conclusion: </strong>miR-144/451 may serve as a potential target for the treatment of inflammatory diseases.</p>","PeriodicalId":10873,"journal":{"name":"Current molecular medicine","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"miR-144/451: A Regulatory Role in Inflammation.\",\"authors\":\"Jiahao Zhu, Yanhua Feng, Lingxiao Zhang, Xialing Pang, Sheng He, Lei Fang\",\"doi\":\"10.2174/0115665240327822241104060015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Inflammation is the natural defense mechanism of the body in response to injury, infection, or other stimuli. Excessive or persistent inflammatory responses can lead to the development of inflammatory diseases. Therefore, elucidating the regulatory mechanisms of inflammatory cells is crucial for understanding the pathogenesis of such diseases and devising novel therapeutic approaches. Moreover, miR-144/451 plays an important role in erythroid maturity and tumour development. Herein, we have reviewed the regulatory role of miR-144/451 in inflammation.</p><p><strong>Methods: </strong>Papers on miR-144, miR-451, and inflammation were retrieved from PubMed and Web of Science to be analysed and summarised.</p><p><strong>Results: </strong>miR-144/451 plays a significant role in modulating inflammatory responses. Pro- and anti-inflammatory gene transcription is regulated by miR-144/451 binding to the 3' untranslated regions. Studies have shown that miR-451 inhibits the activation of various inflammatory cells, including macrophages, neutrophils, and T lymphocytes, thereby reducing the release of inflammatory mediators. However, miR-144 expression varies in different inflammatory diseases. miR-144 expression is downregulated in macrophages after induction by lipopolysaccharide, cysteine, or Mycobacterium tuberculosis, which promotes the secretion of inflammatory mediators; nonetheless, miR-144-3p overexpression in macrophages can aggravate atherosclerosis. Meanwhile, miR-144 overexpression prevents disruption of the lung endothelial cell barrier, whereas it exacerbates endothelial cell injury in Crohn's disease.</p><p><strong>Conclusion: </strong>miR-144/451 may serve as a potential target for the treatment of inflammatory diseases.</p>\",\"PeriodicalId\":10873,\"journal\":{\"name\":\"Current molecular medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current molecular medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115665240327822241104060015\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current molecular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115665240327822241104060015","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:炎症是机体对损伤、感染或其他刺激做出反应的自然防御机制。过度或持续的炎症反应可导致炎症性疾病的发生。因此,阐明炎症细胞的调控机制对于了解此类疾病的发病机制和设计新型治疗方法至关重要。此外,miR-144/451 在红细胞成熟和肿瘤发生中发挥着重要作用。在此,我们综述了 miR-144/451 在炎症中的调控作用:结果:miR-144/451 在调节炎症反应中发挥着重要作用。促炎和抗炎基因的转录受 miR-144/451 与 3' 非翻译区结合的调节。研究表明,miR-451 可抑制巨噬细胞、中性粒细胞和 T 淋巴细胞等各种炎症细胞的活化,从而减少炎症介质的释放。在巨噬细胞中,miR-144 在脂多糖、半胱氨酸或结核分枝杆菌的诱导下表达下调,从而促进炎症介质的分泌;然而,miR-144-3p 在巨噬细胞中过度表达会加重动脉粥样硬化。结论:miR-144/451 可作为治疗炎症性疾病的潜在靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
miR-144/451: A Regulatory Role in Inflammation.

Background: Inflammation is the natural defense mechanism of the body in response to injury, infection, or other stimuli. Excessive or persistent inflammatory responses can lead to the development of inflammatory diseases. Therefore, elucidating the regulatory mechanisms of inflammatory cells is crucial for understanding the pathogenesis of such diseases and devising novel therapeutic approaches. Moreover, miR-144/451 plays an important role in erythroid maturity and tumour development. Herein, we have reviewed the regulatory role of miR-144/451 in inflammation.

Methods: Papers on miR-144, miR-451, and inflammation were retrieved from PubMed and Web of Science to be analysed and summarised.

Results: miR-144/451 plays a significant role in modulating inflammatory responses. Pro- and anti-inflammatory gene transcription is regulated by miR-144/451 binding to the 3' untranslated regions. Studies have shown that miR-451 inhibits the activation of various inflammatory cells, including macrophages, neutrophils, and T lymphocytes, thereby reducing the release of inflammatory mediators. However, miR-144 expression varies in different inflammatory diseases. miR-144 expression is downregulated in macrophages after induction by lipopolysaccharide, cysteine, or Mycobacterium tuberculosis, which promotes the secretion of inflammatory mediators; nonetheless, miR-144-3p overexpression in macrophages can aggravate atherosclerosis. Meanwhile, miR-144 overexpression prevents disruption of the lung endothelial cell barrier, whereas it exacerbates endothelial cell injury in Crohn's disease.

Conclusion: miR-144/451 may serve as a potential target for the treatment of inflammatory diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current molecular medicine
Current molecular medicine 医学-医学:研究与实验
CiteScore
5.00
自引率
4.00%
发文量
141
审稿时长
4-8 weeks
期刊介绍: Current Molecular Medicine is an interdisciplinary journal focused on providing the readership with current and comprehensive reviews/ mini-reviews, original research articles, short communications/letters and drug clinical trial studies on fundamental molecular mechanisms of disease pathogenesis, the development of molecular-diagnosis and/or novel approaches to rational treatment. The reviews should be of significant interest to basic researchers and clinical investigators in molecular medicine. Periodically the journal invites guest editors to devote an issue on a basic research area that shows promise to advance our understanding of the molecular mechanism(s) of a disease or has potential for clinical applications.
期刊最新文献
KIAA1429 Promotes Keloid Formation Through the TGF-Β1/Smad Pathway. miR-144/451: A Regulatory Role in Inflammation. Emerging Applications of Medical Nanorobots in Health Care: Current Trends and Future Prospects. NEDD4 Knockdown Suppresses Human Endometrial Stromal Cell Growth and Invasion by Regulating PTGS2-Mediated Ferroptosis in Endometriosis. Associations between Gut Microbiota and Microbial Metabolites in Adjuvant- induced Arthritis Rats with Moist Heat Arthralgia Spasm Syndrome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1