探索人类生殖的黑匣子:子宫内膜有机体和组装体--生成、植入模型和未来临床前景。

IF 4.6 2区 生物学 Q2 CELL BIOLOGY Frontiers in Cell and Developmental Biology Pub Date : 2024-10-23 eCollection Date: 2024-01-01 DOI:10.3389/fcell.2024.1482054
Mária Kleinová, Ivan Varga, Michaela Čeháková, Martin Valent, Martin Klein
{"title":"探索人类生殖的黑匣子:子宫内膜有机体和组装体--生成、植入模型和未来临床前景。","authors":"Mária Kleinová, Ivan Varga, Michaela Čeháková, Martin Valent, Martin Klein","doi":"10.3389/fcell.2024.1482054","DOIUrl":null,"url":null,"abstract":"<p><p>One of the critical processes in human reproduction that is still poorly understood is implantation. The implantation of an early human embryo is considered a significant limitation of successful pregnancy. Therefore, researchers are trying to develop an ideal model of endometrium <i>in vitro</i> that can mimic the endometrial micro-environment <i>in vivo</i> as much as possible. The ultimate goal of endometrial modeling is to study the molecular interactions at the embryo-maternal interface and to use this model as an <i>in vitro</i> diagnostic tool for infertility. Significant progress has been made over the years in generating such models. The first experiments of endometrial modeling involved animal models, which are undoubtedly valuable, but at the same time, their dissimilarities with human tissue represent a significant obstacle to further research. This fact led researchers to develop basic monolayer coculture systems using uterine cells obtained from biopsies and, later on, complex and multilayer coculture models. With successful tissue engineering methods and various cultivation systems, it is possible to form endometrial two-dimensional (2D) models to three-dimensional (3D) organoids and novel assembloids that can recapitulate many aspects of endometrial tissue architecture and cell composition. These organoids have already helped to provide new insight into the embryo-endometrium interplay. The main aim of this paper is a comprehensive review of past and current approaches to endometrial model generation, their feasibility, and potential clinical application for infertility treatment.</p>","PeriodicalId":12448,"journal":{"name":"Frontiers in Cell and Developmental Biology","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539068/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploring the black box of human reproduction: endometrial organoids and assembloids - generation, implantation modeling, and future clinical perspectives.\",\"authors\":\"Mária Kleinová, Ivan Varga, Michaela Čeháková, Martin Valent, Martin Klein\",\"doi\":\"10.3389/fcell.2024.1482054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>One of the critical processes in human reproduction that is still poorly understood is implantation. The implantation of an early human embryo is considered a significant limitation of successful pregnancy. Therefore, researchers are trying to develop an ideal model of endometrium <i>in vitro</i> that can mimic the endometrial micro-environment <i>in vivo</i> as much as possible. The ultimate goal of endometrial modeling is to study the molecular interactions at the embryo-maternal interface and to use this model as an <i>in vitro</i> diagnostic tool for infertility. Significant progress has been made over the years in generating such models. The first experiments of endometrial modeling involved animal models, which are undoubtedly valuable, but at the same time, their dissimilarities with human tissue represent a significant obstacle to further research. This fact led researchers to develop basic monolayer coculture systems using uterine cells obtained from biopsies and, later on, complex and multilayer coculture models. With successful tissue engineering methods and various cultivation systems, it is possible to form endometrial two-dimensional (2D) models to three-dimensional (3D) organoids and novel assembloids that can recapitulate many aspects of endometrial tissue architecture and cell composition. These organoids have already helped to provide new insight into the embryo-endometrium interplay. The main aim of this paper is a comprehensive review of past and current approaches to endometrial model generation, their feasibility, and potential clinical application for infertility treatment.</p>\",\"PeriodicalId\":12448,\"journal\":{\"name\":\"Frontiers in Cell and Developmental Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539068/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Cell and Developmental Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fcell.2024.1482054\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cell and Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fcell.2024.1482054","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人类生殖的关键过程之一是植入,但人们对这一过程的了解仍然很少。人类早期胚胎的植入被认为是成功怀孕的重要限制因素。因此,研究人员正试图在体外开发一种理想的子宫内膜模型,以尽可能模拟体内的子宫内膜微环境。子宫内膜建模的最终目标是研究胚胎与母体界面的分子相互作用,并将该模型用作不孕症的体外诊断工具。多年来,在生成此类模型方面取得了重大进展。最初的子宫内膜建模实验涉及动物模型,动物模型无疑是有价值的,但与此同时,动物模型与人体组织的不相似性也成为进一步研究的重大障碍。这一事实促使研究人员利用从活体组织中获取的子宫细胞开发了基本的单层细胞培养系统,后来又开发了复杂的多层细胞培养模型。有了成功的组织工程方法和各种培养系统,就有可能将子宫内膜二维(2D)模型发展成三维(3D)有机体和新型组装体,从而再现子宫内膜组织结构和细胞组成的许多方面。这些器官组织已经帮助人们对胚胎-子宫内膜的相互作用有了新的认识。本文的主要目的是全面回顾过去和当前生成子宫内膜模型的方法、其可行性以及在不孕症治疗中的潜在临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring the black box of human reproduction: endometrial organoids and assembloids - generation, implantation modeling, and future clinical perspectives.

One of the critical processes in human reproduction that is still poorly understood is implantation. The implantation of an early human embryo is considered a significant limitation of successful pregnancy. Therefore, researchers are trying to develop an ideal model of endometrium in vitro that can mimic the endometrial micro-environment in vivo as much as possible. The ultimate goal of endometrial modeling is to study the molecular interactions at the embryo-maternal interface and to use this model as an in vitro diagnostic tool for infertility. Significant progress has been made over the years in generating such models. The first experiments of endometrial modeling involved animal models, which are undoubtedly valuable, but at the same time, their dissimilarities with human tissue represent a significant obstacle to further research. This fact led researchers to develop basic monolayer coculture systems using uterine cells obtained from biopsies and, later on, complex and multilayer coculture models. With successful tissue engineering methods and various cultivation systems, it is possible to form endometrial two-dimensional (2D) models to three-dimensional (3D) organoids and novel assembloids that can recapitulate many aspects of endometrial tissue architecture and cell composition. These organoids have already helped to provide new insight into the embryo-endometrium interplay. The main aim of this paper is a comprehensive review of past and current approaches to endometrial model generation, their feasibility, and potential clinical application for infertility treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Cell and Developmental Biology
Frontiers in Cell and Developmental Biology Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
9.70
自引率
3.60%
发文量
2531
审稿时长
12 weeks
期刊介绍: Frontiers in Cell and Developmental Biology is a broad-scope, interdisciplinary open-access journal, focusing on the fundamental processes of life, led by Prof Amanda Fisher and supported by a geographically diverse, high-quality editorial board. The journal welcomes submissions on a wide spectrum of cell and developmental biology, covering intracellular and extracellular dynamics, with sections focusing on signaling, adhesion, migration, cell death and survival and membrane trafficking. Additionally, the journal offers sections dedicated to the cutting edge of fundamental and translational research in molecular medicine and stem cell biology. With a collaborative, rigorous and transparent peer-review, the journal produces the highest scientific quality in both fundamental and applied research, and advanced article level metrics measure the real-time impact and influence of each publication.
期刊最新文献
Chondrocyte autophagy mechanism and therapeutic prospects in osteoarthritis. Exploring the black box of human reproduction: endometrial organoids and assembloids - generation, implantation modeling, and future clinical perspectives. First photon-counting detector computed tomography in the living crocodile: a 3D-Imaging study with special reference to amphibious hearing. Mechanosensory entities and functionality of endothelial cells. Single-cell transcriptome analysis identifies a novel tumor-associated macrophage subtype predicting better prognosis in pancreatic ductal adenocarcinoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1