神经炎症、神经变性和神经保护的三培养模型。

IF 3.4 3区 医学 Q2 NEUROSCIENCES Journal of Alzheimer's Disease Pub Date : 2024-11-06 DOI:10.1177/13872877241294181
Aswathy Peethambaran Mallika
{"title":"神经炎症、神经变性和神经保护的三培养模型。","authors":"Aswathy Peethambaran Mallika","doi":"10.1177/13872877241294181","DOIUrl":null,"url":null,"abstract":"<p><p>The study of neurodegenerative diseases, such as Alzheimer's disease (AD), has long been a complex and challenging task. One of the major hurdles in understanding these diseases is the difficulty in recapitulating the complex interactions between neurons, astrocytes, and microglia in a laboratory setting. In recent years, researchers have made significant progress in developing triculture models that combine these three cell types, allowing for a more accurate representation of the cellular context of the human brain. This commentary discusses the recent advancements and importance of using tri-culture model systems in clarifying the pathophysiology of AD and discusses the recent article by Kim et al. (2024) published in the <i>Journal of Alzheimer's Disease</i>.</p>","PeriodicalId":14929,"journal":{"name":"Journal of Alzheimer's Disease","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tri-culture modeling of neuroinflammation, neurodegeneration, and neuroprotection.\",\"authors\":\"Aswathy Peethambaran Mallika\",\"doi\":\"10.1177/13872877241294181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The study of neurodegenerative diseases, such as Alzheimer's disease (AD), has long been a complex and challenging task. One of the major hurdles in understanding these diseases is the difficulty in recapitulating the complex interactions between neurons, astrocytes, and microglia in a laboratory setting. In recent years, researchers have made significant progress in developing triculture models that combine these three cell types, allowing for a more accurate representation of the cellular context of the human brain. This commentary discusses the recent advancements and importance of using tri-culture model systems in clarifying the pathophysiology of AD and discusses the recent article by Kim et al. (2024) published in the <i>Journal of Alzheimer's Disease</i>.</p>\",\"PeriodicalId\":14929,\"journal\":{\"name\":\"Journal of Alzheimer's Disease\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alzheimer's Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/13872877241294181\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alzheimer's Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/13872877241294181","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

长期以来,对阿尔茨海默病(AD)等神经退行性疾病的研究一直是一项复杂而富有挑战性的任务。理解这些疾病的主要障碍之一是难以在实验室环境中重现神经元、星形胶质细胞和小胶质细胞之间复杂的相互作用。近年来,研究人员在开发结合这三种细胞类型的三培养模型方面取得了重大进展,从而能够更准确地再现人脑的细胞环境。本评论将讨论三培养模型系统在阐明阿尔茨海默病病理生理学方面的最新进展和重要性,并讨论 Kim 等人(2024 年)最近在《阿尔茨海默病杂志》(Journal of Alzheimer's Disease)上发表的文章。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tri-culture modeling of neuroinflammation, neurodegeneration, and neuroprotection.

The study of neurodegenerative diseases, such as Alzheimer's disease (AD), has long been a complex and challenging task. One of the major hurdles in understanding these diseases is the difficulty in recapitulating the complex interactions between neurons, astrocytes, and microglia in a laboratory setting. In recent years, researchers have made significant progress in developing triculture models that combine these three cell types, allowing for a more accurate representation of the cellular context of the human brain. This commentary discusses the recent advancements and importance of using tri-culture model systems in clarifying the pathophysiology of AD and discusses the recent article by Kim et al. (2024) published in the Journal of Alzheimer's Disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Alzheimer's Disease
Journal of Alzheimer's Disease 医学-神经科学
CiteScore
6.40
自引率
7.50%
发文量
1327
审稿时长
2 months
期刊介绍: The Journal of Alzheimer''s Disease (JAD) is an international multidisciplinary journal to facilitate progress in understanding the etiology, pathogenesis, epidemiology, genetics, behavior, treatment and psychology of Alzheimer''s disease. The journal publishes research reports, reviews, short communications, hypotheses, ethics reviews, book reviews, and letters-to-the-editor. The journal is dedicated to providing an open forum for original research that will expedite our fundamental understanding of Alzheimer''s disease.
期刊最新文献
Assessing palliative care needs in patients with dementia: A cross-sectional analysis of an predominantly oldest-old population from a geriatric memory clinic. Tri-culture modeling of neuroinflammation, neurodegeneration, and neuroprotection. Real-world assessment of caregiver preference and compliance to treatment with twice-weekly versus daily rivastigmine patches in Alzheimer's disease. A call for globally responsive screening materials to account for heterogeneity in dementia syndromes. Primary cortical cell tri-culture to study effects of amyloid-β on microglia function and neuroinflammatory response.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1