Jifeng Sun, Hao Wang, Ran Zhang, Xiaoxuan Sun, Zhanbo Wu, Jun Wang, Yuwen Wang
{"title":"IGF2BP3/CTCF轴依赖性NT5DC2促进M2巨噬细胞极化,从而加强肺鳞癌的恶性进展","authors":"Jifeng Sun, Hao Wang, Ran Zhang, Xiaoxuan Sun, Zhanbo Wu, Jun Wang, Yuwen Wang","doi":"10.1111/crj.70031","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Lung squamous cell carcinoma (LUSC) is a type of lung cancer that develops in the squamous cells. It is known to be promoted by the activation of various signaling pathways and the dysregulation of key regulatory molecules. One such molecule, 5′-nucleotidase domain containing 2 (NT5DC2), has been identified as a critical regulator in various cancers including lung cancer. However, there are no data regarding its role in LUSC.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>The mRNA expression of insulin-like growth factor 2 mRNA–binding protein 3 (IGF2BP3), CCCTC-binding factor (CTCF), and NT5DC2 was analyzed using quantitative real-time polymerase chain reaction (qRT-PCR), whereas their protein expression was assessed using a western blotting assay. Cell proliferation was determined using a cell counting kit-8 (CCK-8) assay. Cell apoptosis, CD11b expression, and CD206 expression were analyzed using flow cytometry. Tube formation was assessed through a tube formation assay. Glucose consumption, lactate production, and ATP levels were measured using colorimetric methods. The effect of NT5DC2 on the malignant progression of LUSC cells was analyzed using a xenograft mouse model assay. The levels of transforming growth factor-beta 1 (TGF-β1) and interleukin-10 (IL-10) were detected using enzyme-linked immunosorbent assays. The associations among IGF2BP3, CTCF and NT5DC2 were identified using dual-luciferase reporter assay, RNA immunoprecipitation assay and m6A RNA immunoprecipitation assay.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The expression of NT5DC2 was found to be upregulated in LUSC tissues and cells when compared with normal lung tissues and normal human bronchial epithelial cells. Silencing of NT5DC2 inhibited LUSC cell proliferation, tube formation, glycolysis, M2 macrophage polarization, and tumor formation while inducing cell apoptosis. In addition, CTCF was found to transcriptionally activate NT5DC2 in LUSC cells. IGF2BP3 stabilized the mRNA expression of CTCF through m6A methylation. Further, overexpression of CTCF or NT5DC2 attenuated the effects of IGF2BP3 silencing in both NCI-520 and SK-MES-1 cells.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>The IGF2BP3/CTCF axis–dependent NT5DC2 promotes M2 macrophage polarization, thereby enhancing the malignant progression of LUSC. This study was the first to reveal the role of NT5DC2 in LUSC and the underlying mechanism. The result suggests that targeting the IGF2BP3/CTCF/NT5DC2 axis may have clinical significance in the treatment of LUSC.</p>\n </section>\n </div>","PeriodicalId":55247,"journal":{"name":"Clinical Respiratory Journal","volume":"18 11","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540834/pdf/","citationCount":"0","resultStr":"{\"title\":\"IGF2BP3/CTCF Axis–Dependent NT5DC2 Promotes M2 Macrophage Polarization to Enhance the Malignant Progression of Lung Squamous Cell Carcinomas\",\"authors\":\"Jifeng Sun, Hao Wang, Ran Zhang, Xiaoxuan Sun, Zhanbo Wu, Jun Wang, Yuwen Wang\",\"doi\":\"10.1111/crj.70031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>Lung squamous cell carcinoma (LUSC) is a type of lung cancer that develops in the squamous cells. It is known to be promoted by the activation of various signaling pathways and the dysregulation of key regulatory molecules. One such molecule, 5′-nucleotidase domain containing 2 (NT5DC2), has been identified as a critical regulator in various cancers including lung cancer. However, there are no data regarding its role in LUSC.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>The mRNA expression of insulin-like growth factor 2 mRNA–binding protein 3 (IGF2BP3), CCCTC-binding factor (CTCF), and NT5DC2 was analyzed using quantitative real-time polymerase chain reaction (qRT-PCR), whereas their protein expression was assessed using a western blotting assay. Cell proliferation was determined using a cell counting kit-8 (CCK-8) assay. Cell apoptosis, CD11b expression, and CD206 expression were analyzed using flow cytometry. Tube formation was assessed through a tube formation assay. Glucose consumption, lactate production, and ATP levels were measured using colorimetric methods. The effect of NT5DC2 on the malignant progression of LUSC cells was analyzed using a xenograft mouse model assay. The levels of transforming growth factor-beta 1 (TGF-β1) and interleukin-10 (IL-10) were detected using enzyme-linked immunosorbent assays. The associations among IGF2BP3, CTCF and NT5DC2 were identified using dual-luciferase reporter assay, RNA immunoprecipitation assay and m6A RNA immunoprecipitation assay.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>The expression of NT5DC2 was found to be upregulated in LUSC tissues and cells when compared with normal lung tissues and normal human bronchial epithelial cells. Silencing of NT5DC2 inhibited LUSC cell proliferation, tube formation, glycolysis, M2 macrophage polarization, and tumor formation while inducing cell apoptosis. In addition, CTCF was found to transcriptionally activate NT5DC2 in LUSC cells. IGF2BP3 stabilized the mRNA expression of CTCF through m6A methylation. Further, overexpression of CTCF or NT5DC2 attenuated the effects of IGF2BP3 silencing in both NCI-520 and SK-MES-1 cells.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>The IGF2BP3/CTCF axis–dependent NT5DC2 promotes M2 macrophage polarization, thereby enhancing the malignant progression of LUSC. This study was the first to reveal the role of NT5DC2 in LUSC and the underlying mechanism. The result suggests that targeting the IGF2BP3/CTCF/NT5DC2 axis may have clinical significance in the treatment of LUSC.</p>\\n </section>\\n </div>\",\"PeriodicalId\":55247,\"journal\":{\"name\":\"Clinical Respiratory Journal\",\"volume\":\"18 11\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540834/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Respiratory Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/crj.70031\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RESPIRATORY SYSTEM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Respiratory Journal","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/crj.70031","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
IGF2BP3/CTCF Axis–Dependent NT5DC2 Promotes M2 Macrophage Polarization to Enhance the Malignant Progression of Lung Squamous Cell Carcinomas
Background
Lung squamous cell carcinoma (LUSC) is a type of lung cancer that develops in the squamous cells. It is known to be promoted by the activation of various signaling pathways and the dysregulation of key regulatory molecules. One such molecule, 5′-nucleotidase domain containing 2 (NT5DC2), has been identified as a critical regulator in various cancers including lung cancer. However, there are no data regarding its role in LUSC.
Methods
The mRNA expression of insulin-like growth factor 2 mRNA–binding protein 3 (IGF2BP3), CCCTC-binding factor (CTCF), and NT5DC2 was analyzed using quantitative real-time polymerase chain reaction (qRT-PCR), whereas their protein expression was assessed using a western blotting assay. Cell proliferation was determined using a cell counting kit-8 (CCK-8) assay. Cell apoptosis, CD11b expression, and CD206 expression were analyzed using flow cytometry. Tube formation was assessed through a tube formation assay. Glucose consumption, lactate production, and ATP levels were measured using colorimetric methods. The effect of NT5DC2 on the malignant progression of LUSC cells was analyzed using a xenograft mouse model assay. The levels of transforming growth factor-beta 1 (TGF-β1) and interleukin-10 (IL-10) were detected using enzyme-linked immunosorbent assays. The associations among IGF2BP3, CTCF and NT5DC2 were identified using dual-luciferase reporter assay, RNA immunoprecipitation assay and m6A RNA immunoprecipitation assay.
Results
The expression of NT5DC2 was found to be upregulated in LUSC tissues and cells when compared with normal lung tissues and normal human bronchial epithelial cells. Silencing of NT5DC2 inhibited LUSC cell proliferation, tube formation, glycolysis, M2 macrophage polarization, and tumor formation while inducing cell apoptosis. In addition, CTCF was found to transcriptionally activate NT5DC2 in LUSC cells. IGF2BP3 stabilized the mRNA expression of CTCF through m6A methylation. Further, overexpression of CTCF or NT5DC2 attenuated the effects of IGF2BP3 silencing in both NCI-520 and SK-MES-1 cells.
Conclusion
The IGF2BP3/CTCF axis–dependent NT5DC2 promotes M2 macrophage polarization, thereby enhancing the malignant progression of LUSC. This study was the first to reveal the role of NT5DC2 in LUSC and the underlying mechanism. The result suggests that targeting the IGF2BP3/CTCF/NT5DC2 axis may have clinical significance in the treatment of LUSC.
期刊介绍:
Overview
Effective with the 2016 volume, this journal will be published in an online-only format.
Aims and Scope
The Clinical Respiratory Journal (CRJ) provides a forum for clinical research in all areas of respiratory medicine from clinical lung disease to basic research relevant to the clinic.
We publish original research, review articles, case studies, editorials and book reviews in all areas of clinical lung disease including:
Asthma
Allergy
COPD
Non-invasive ventilation
Sleep related breathing disorders
Interstitial lung diseases
Lung cancer
Clinical genetics
Rhinitis
Airway and lung infection
Epidemiology
Pediatrics
CRJ provides a fast-track service for selected Phase II and Phase III trial studies.
Keywords
Clinical Respiratory Journal, respiratory, pulmonary, medicine, clinical, lung disease,
Abstracting and Indexing Information
Academic Search (EBSCO Publishing)
Academic Search Alumni Edition (EBSCO Publishing)
Embase (Elsevier)
Health & Medical Collection (ProQuest)
Health Research Premium Collection (ProQuest)
HEED: Health Economic Evaluations Database (Wiley-Blackwell)
Hospital Premium Collection (ProQuest)
Journal Citation Reports/Science Edition (Clarivate Analytics)
MEDLINE/PubMed (NLM)
ProQuest Central (ProQuest)
Science Citation Index Expanded (Clarivate Analytics)
SCOPUS (Elsevier)