ChatGPT 在院前急性缺血性中风和大血管闭塞 (LVO) 中风筛查方面的性能。

IF 2.9 3区 医学 Q2 HEALTH CARE SCIENCES & SERVICES DIGITAL HEALTH Pub Date : 2024-11-05 eCollection Date: 2024-01-01 DOI:10.1177/20552076241297127
Xinhao Wang, Shisheng Ye, Jinwen Feng, Kaiyan Feng, Heng Yang, Hao Li
{"title":"ChatGPT 在院前急性缺血性中风和大血管闭塞 (LVO) 中风筛查方面的性能。","authors":"Xinhao Wang, Shisheng Ye, Jinwen Feng, Kaiyan Feng, Heng Yang, Hao Li","doi":"10.1177/20552076241297127","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The management of acute ischemic stroke (AIS) is time-sensitive, yet prehospital delays remain prevalent. The application of large language models (LLMs) for medical text analysis may play a potential role in clinical decision support. We assess the performance of LLMs on prehospital AIS and large vessel occlusion (LVO) stroke screening.</p><p><strong>Methods: </strong>This retrospective study sourced cases from the electronic medical record database of the emergency department (ED) at Maoming People's Hospital, encompassing patients who presented to the ED between June and November 2023. We evaluate the diagnostic accuracy of GPT-3.5 and GPT-4 for the detection of AIS and LVO stroke by comparing the sensitivity, specificity, accuracy, positive predictive value, negative predictive value, and positive likelihood ratio and AUC of both LLMs. The neurological reasoning of LLMs was rated on a five-point Likert scale for factual correctness and the occurrence of errors.</p><p><strong>Result: </strong>On 400 records from 400 patients (mean age, 70.0 years ± 12.5 [SD]; 273 male), GPT-4 outperformed GPT-3.5 in AIS screening (AUC 0.75 (0.65-0.84) vs 0.59 (0.50-0.69), P = 0.015) and LVO identification (AUC 0.71 (0.65-0.77) vs 0.60 (0.53-0.66), P < 0.001). GPT-4 achieved higher accuracy than GPT-3.5 in screening of AIS (89.3% [95% CI: 85.8, 91.9] vs 86.5% [95% CI: 82.8, 89.5]) and LVO stroke identification (67.0% [95% CI: 62.3%, 71.4%] vs 47.3% [95% CI: 42.4%, 52.2%]). In neurological reasoning, GPT-4 had higher Likert scale scores for factual correctness (4.24 vs 3.62), with a lower rate of error (6.8% vs 24.8%) than GPT-3.5 (all P < 0.001).</p><p><strong>Conclusions: </strong>The result demonstrates that LLMs possess diagnostic capability in the prehospital identification of ischemic stroke, with the ability to exhibit neurologically informed reasoning processes. Notably, GPT-4 outperforms GPT-3.5 in the recognition of AIS and LVO stroke, achieving results comparable to prehospital scales. LLMs are supposed to become a promising supportive decision-making tool for EMS practitioners in screening prehospital stroke.</p>","PeriodicalId":51333,"journal":{"name":"DIGITAL HEALTH","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539183/pdf/","citationCount":"0","resultStr":"{\"title\":\"Performance of ChatGPT on prehospital acute ischemic stroke and large vessel occlusion (LVO) stroke screening.\",\"authors\":\"Xinhao Wang, Shisheng Ye, Jinwen Feng, Kaiyan Feng, Heng Yang, Hao Li\",\"doi\":\"10.1177/20552076241297127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The management of acute ischemic stroke (AIS) is time-sensitive, yet prehospital delays remain prevalent. The application of large language models (LLMs) for medical text analysis may play a potential role in clinical decision support. We assess the performance of LLMs on prehospital AIS and large vessel occlusion (LVO) stroke screening.</p><p><strong>Methods: </strong>This retrospective study sourced cases from the electronic medical record database of the emergency department (ED) at Maoming People's Hospital, encompassing patients who presented to the ED between June and November 2023. We evaluate the diagnostic accuracy of GPT-3.5 and GPT-4 for the detection of AIS and LVO stroke by comparing the sensitivity, specificity, accuracy, positive predictive value, negative predictive value, and positive likelihood ratio and AUC of both LLMs. The neurological reasoning of LLMs was rated on a five-point Likert scale for factual correctness and the occurrence of errors.</p><p><strong>Result: </strong>On 400 records from 400 patients (mean age, 70.0 years ± 12.5 [SD]; 273 male), GPT-4 outperformed GPT-3.5 in AIS screening (AUC 0.75 (0.65-0.84) vs 0.59 (0.50-0.69), P = 0.015) and LVO identification (AUC 0.71 (0.65-0.77) vs 0.60 (0.53-0.66), P < 0.001). GPT-4 achieved higher accuracy than GPT-3.5 in screening of AIS (89.3% [95% CI: 85.8, 91.9] vs 86.5% [95% CI: 82.8, 89.5]) and LVO stroke identification (67.0% [95% CI: 62.3%, 71.4%] vs 47.3% [95% CI: 42.4%, 52.2%]). In neurological reasoning, GPT-4 had higher Likert scale scores for factual correctness (4.24 vs 3.62), with a lower rate of error (6.8% vs 24.8%) than GPT-3.5 (all P < 0.001).</p><p><strong>Conclusions: </strong>The result demonstrates that LLMs possess diagnostic capability in the prehospital identification of ischemic stroke, with the ability to exhibit neurologically informed reasoning processes. Notably, GPT-4 outperforms GPT-3.5 in the recognition of AIS and LVO stroke, achieving results comparable to prehospital scales. LLMs are supposed to become a promising supportive decision-making tool for EMS practitioners in screening prehospital stroke.</p>\",\"PeriodicalId\":51333,\"journal\":{\"name\":\"DIGITAL HEALTH\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539183/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DIGITAL HEALTH\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/20552076241297127\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DIGITAL HEALTH","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/20552076241297127","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

背景:急性缺血性脑卒中(AIS)的救治具有时间敏感性,但院前延误仍然普遍存在。应用大语言模型(LLMs)进行医学文本分析可在临床决策支持中发挥潜在作用。我们评估了大语言模型在院前 AIS 和大血管闭塞(LVO)中风筛查中的表现:这项回顾性研究的病例来自茂名市人民医院急诊科(ED)的电子病历数据库,包括 2023 年 6 月至 11 月期间到急诊科就诊的患者。我们通过比较两种 LLM 的敏感性、特异性、准确性、阳性预测值、阴性预测值、阳性似然比和 AUC,评估 GPT-3.5 和 GPT-4 检测 AIS 和 LVO 卒中的诊断准确性。对 LLM 神经推理的事实正确性和错误发生率采用李克特五点量表进行评分:结果:在来自 400 名患者(平均年龄为 70.0 岁 ± 12.5 [SD];273 名男性)的 400 份记录中,GPT-4 在 AIS 筛选(AUC 0.75 (0.65-0.84) vs 0.59 (0.50-0.69),P = 0.015)和 LVO 识别(AUC 0.71 (0.65-0.77) vs 0.60 (0.53-0.66),P 结论:GPT-4 和 GPT-3.5 均优于 GPT-3:结果表明,LLMs 具有院前识别缺血性卒中的诊断能力,并能进行神经学推理。值得注意的是,GPT-4 在识别 AIS 和 LVO 中风方面优于 GPT-3.5,其结果与院前量表相当。LLM 可望成为急救医生筛查院前卒中的辅助决策工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance of ChatGPT on prehospital acute ischemic stroke and large vessel occlusion (LVO) stroke screening.

Background: The management of acute ischemic stroke (AIS) is time-sensitive, yet prehospital delays remain prevalent. The application of large language models (LLMs) for medical text analysis may play a potential role in clinical decision support. We assess the performance of LLMs on prehospital AIS and large vessel occlusion (LVO) stroke screening.

Methods: This retrospective study sourced cases from the electronic medical record database of the emergency department (ED) at Maoming People's Hospital, encompassing patients who presented to the ED between June and November 2023. We evaluate the diagnostic accuracy of GPT-3.5 and GPT-4 for the detection of AIS and LVO stroke by comparing the sensitivity, specificity, accuracy, positive predictive value, negative predictive value, and positive likelihood ratio and AUC of both LLMs. The neurological reasoning of LLMs was rated on a five-point Likert scale for factual correctness and the occurrence of errors.

Result: On 400 records from 400 patients (mean age, 70.0 years ± 12.5 [SD]; 273 male), GPT-4 outperformed GPT-3.5 in AIS screening (AUC 0.75 (0.65-0.84) vs 0.59 (0.50-0.69), P = 0.015) and LVO identification (AUC 0.71 (0.65-0.77) vs 0.60 (0.53-0.66), P < 0.001). GPT-4 achieved higher accuracy than GPT-3.5 in screening of AIS (89.3% [95% CI: 85.8, 91.9] vs 86.5% [95% CI: 82.8, 89.5]) and LVO stroke identification (67.0% [95% CI: 62.3%, 71.4%] vs 47.3% [95% CI: 42.4%, 52.2%]). In neurological reasoning, GPT-4 had higher Likert scale scores for factual correctness (4.24 vs 3.62), with a lower rate of error (6.8% vs 24.8%) than GPT-3.5 (all P < 0.001).

Conclusions: The result demonstrates that LLMs possess diagnostic capability in the prehospital identification of ischemic stroke, with the ability to exhibit neurologically informed reasoning processes. Notably, GPT-4 outperforms GPT-3.5 in the recognition of AIS and LVO stroke, achieving results comparable to prehospital scales. LLMs are supposed to become a promising supportive decision-making tool for EMS practitioners in screening prehospital stroke.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
DIGITAL HEALTH
DIGITAL HEALTH Multiple-
CiteScore
2.90
自引率
7.70%
发文量
302
期刊最新文献
A mixed-methods examination of the acceptability of, CareMOBI, a dementia-focused mhealth app, among primary care providers. Assessing the accuracy and clinical utility of GPT-4O in abnormal blood cell morphology recognition. Diagnosing epileptic seizures using combined features from independent components and prediction probability from EEG data. Exploring the feasibility, acceptability, usability and safety of a digitally supported self-management intervention for uncontrolled asthma: A pre-post pilot study in secondary care. Performance of ChatGPT on prehospital acute ischemic stroke and large vessel occlusion (LVO) stroke screening.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1