微生物教育在利用微生物群的有益特性保护巨尾鳕感染疾病方面发挥着至关重要的作用。

IF 3.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Scientific Reports Pub Date : 2024-11-06 DOI:10.1038/s41598-024-76096-4
Luc Dantan, Prunelle Carcassonne, Lionel Degrémont, Benjamin Morga, Marie-Agnès Travers, Bruno Petton, Mickael Mege, Elise Maurouard, Jean-François Allienne, Gaëlle Courtay, Océane Romatif, Juliette Pouzadoux, Raphaël Lami, Laurent Intertaglia, Yannick Gueguen, Jeremie Vidal-Dupiol, Eve Toulza, Céline Cosseau
{"title":"微生物教育在利用微生物群的有益特性保护巨尾鳕感染疾病方面发挥着至关重要的作用。","authors":"Luc Dantan, Prunelle Carcassonne, Lionel Degrémont, Benjamin Morga, Marie-Agnès Travers, Bruno Petton, Mickael Mege, Elise Maurouard, Jean-François Allienne, Gaëlle Courtay, Océane Romatif, Juliette Pouzadoux, Raphaël Lami, Laurent Intertaglia, Yannick Gueguen, Jeremie Vidal-Dupiol, Eve Toulza, Céline Cosseau","doi":"10.1038/s41598-024-76096-4","DOIUrl":null,"url":null,"abstract":"<p><p>The increase in marine diseases, particularly in economically important mollusks, is a growing concern. Among them, the Pacific oyster (Crassostrea gigas) production faces challenges from several diseases, such as the Pacific Oyster Mortality Syndrome (POMS) or vibriosis. The microbial education, which consists of exposing the host immune system to beneficial microorganisms during early life stages is a promising approach against diseases. This study explores the concept of microbial education using controlled and pathogen-free bacterial communities and assesses its protective effects against POMS and Vibrio aestuarianus infections, highlighting potential applications in oyster production. We demonstrate that it is possible to educate the oyster immune system by adding microorganisms during the larval stage. Adding culture based bacterial mixes to larvae protects only against the POMS disease while adding whole microbial communities from oyster donors protects against both POMS and vibriosis. The efficiency of immune protection depends both on oyster origin and on the composition of the bacterial mixes used for exposure. No preferential protection was observed when the oysters were stimulated with their sympatric strains. Furthermore, the added bacteria were not maintained into the oyster microbiota, but this bacterial addition induced long term changes in the microbiota composition and oyster immune gene expression. Our study reveals successful immune system education of oysters by introducing beneficial microorganisms during the larval stage. We improved the long-term resistance of oysters against critical diseases (POMS disease and Vibrio aestuarianus infections) highlighting the potential of microbial education in aquaculture.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541537/pdf/","citationCount":"0","resultStr":"{\"title\":\"Microbial education plays a crucial role in harnessing the beneficial properties of microbiota for infectious disease protection in Crassostrea gigas.\",\"authors\":\"Luc Dantan, Prunelle Carcassonne, Lionel Degrémont, Benjamin Morga, Marie-Agnès Travers, Bruno Petton, Mickael Mege, Elise Maurouard, Jean-François Allienne, Gaëlle Courtay, Océane Romatif, Juliette Pouzadoux, Raphaël Lami, Laurent Intertaglia, Yannick Gueguen, Jeremie Vidal-Dupiol, Eve Toulza, Céline Cosseau\",\"doi\":\"10.1038/s41598-024-76096-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The increase in marine diseases, particularly in economically important mollusks, is a growing concern. Among them, the Pacific oyster (Crassostrea gigas) production faces challenges from several diseases, such as the Pacific Oyster Mortality Syndrome (POMS) or vibriosis. The microbial education, which consists of exposing the host immune system to beneficial microorganisms during early life stages is a promising approach against diseases. This study explores the concept of microbial education using controlled and pathogen-free bacterial communities and assesses its protective effects against POMS and Vibrio aestuarianus infections, highlighting potential applications in oyster production. We demonstrate that it is possible to educate the oyster immune system by adding microorganisms during the larval stage. Adding culture based bacterial mixes to larvae protects only against the POMS disease while adding whole microbial communities from oyster donors protects against both POMS and vibriosis. The efficiency of immune protection depends both on oyster origin and on the composition of the bacterial mixes used for exposure. No preferential protection was observed when the oysters were stimulated with their sympatric strains. Furthermore, the added bacteria were not maintained into the oyster microbiota, but this bacterial addition induced long term changes in the microbiota composition and oyster immune gene expression. Our study reveals successful immune system education of oysters by introducing beneficial microorganisms during the larval stage. We improved the long-term resistance of oysters against critical diseases (POMS disease and Vibrio aestuarianus infections) highlighting the potential of microbial education in aquaculture.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541537/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-76096-4\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-76096-4","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

海洋疾病的增加,尤其是对经济具有重要意义的软体动物疾病的增加,日益引起人们的关注。其中,太平洋牡蛎(Crassostrea gigas)的生产面临着几种疾病的挑战,如太平洋牡蛎死亡综合症(POMS)或弧菌病。微生物教育包括在生命早期阶段让宿主免疫系统接触有益微生物,是一种很有前景的抗病方法。本研究利用受控的无病原体细菌群落探索了微生物教育的概念,并评估了其对 POMS 和弧菌感染的保护作用,强调了其在牡蛎生产中的潜在应用。我们证明,在牡蛎幼体阶段添加微生物可以教育牡蛎的免疫系统。向幼体中添加基于培养基的细菌混合物仅能防止 POMS 疾病,而添加来自牡蛎供体的整个微生物群落则能防止 POMS 和弧菌病。免疫保护的效率取决于牡蛎的来源和用于暴露的混合细菌的成分。用牡蛎的同域菌株刺激牡蛎时,没有观察到优先保护作用。此外,添加的细菌不能保持在牡蛎微生物群中,但这种细菌添加会引起微生物群组成和牡蛎免疫基因表达的长期变化。我们的研究表明,通过在幼体阶段引入有益微生物,牡蛎的免疫系统教育取得了成功。我们提高了牡蛎对关键疾病(POMS 疾病和弧菌感染)的长期抵抗力,突出了微生物教育在水产养殖中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microbial education plays a crucial role in harnessing the beneficial properties of microbiota for infectious disease protection in Crassostrea gigas.

The increase in marine diseases, particularly in economically important mollusks, is a growing concern. Among them, the Pacific oyster (Crassostrea gigas) production faces challenges from several diseases, such as the Pacific Oyster Mortality Syndrome (POMS) or vibriosis. The microbial education, which consists of exposing the host immune system to beneficial microorganisms during early life stages is a promising approach against diseases. This study explores the concept of microbial education using controlled and pathogen-free bacterial communities and assesses its protective effects against POMS and Vibrio aestuarianus infections, highlighting potential applications in oyster production. We demonstrate that it is possible to educate the oyster immune system by adding microorganisms during the larval stage. Adding culture based bacterial mixes to larvae protects only against the POMS disease while adding whole microbial communities from oyster donors protects against both POMS and vibriosis. The efficiency of immune protection depends both on oyster origin and on the composition of the bacterial mixes used for exposure. No preferential protection was observed when the oysters were stimulated with their sympatric strains. Furthermore, the added bacteria were not maintained into the oyster microbiota, but this bacterial addition induced long term changes in the microbiota composition and oyster immune gene expression. Our study reveals successful immune system education of oysters by introducing beneficial microorganisms during the larval stage. We improved the long-term resistance of oysters against critical diseases (POMS disease and Vibrio aestuarianus infections) highlighting the potential of microbial education in aquaculture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
期刊最新文献
Floods of Egypt's Nile in the 21st century. Hypoxic postconditioning modulates neuroprotective glial reactivity in a 3D cortical ischemic-hypoxic injury model. A study on the changes in rice composition under reduced fertilization conditions using Raman spectroscopy technology. MethylCallR : a comprehensive analysis framework for Illumina Methylation Beadchip. Acute kidney injury predicts the risk of adverse cardio renal events and all cause death in southeast Asian people with type 2 diabetes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1